ZEROES OF QUADRATIC POLYNOMIAL WORKSHEET

Problem 1 :

The value of k for which -4 is a zero of the polynomial

x² - x - (2k + 2) is

a)   3     b) 9     c) 6     d) -1

Solution

Problem 2 :

If the zeros of the quadratic polynomial

ax² + bx + c, c ≠ 0

are equal, then

a. c and a have opposite sign

b. c and b have opposite sign

c. c and a have same sign

d. c and b have same sign

Solution

Problem 3 :

The number of zeros of the polynomial from the graph is

zeroesofpolynomialq1

a)   0     b) 1     c) 2     d) 3

Solution

Problem 4 :

If one of the zero of the quadratic polynomial

x² + 3x + k is 2

then the value of k is

a)   10     b) -10     c) 2     d) 3

Solution

Problem 5 :

A quadratic polynomial whose zeros are -3 and 4 is

a)   x²  - x + 12     b) x² + x + 12

c) 2x² + 2x - 24     d) none of the above

Solution

Problem 6 :

The relationship between the zeros and coefficients of the quadratic polynomial

ax² + bx + c is

a)   α + β = c/a     b) α + β = -b/a

c) α + β = -c/a     d) α + β = b/a

Solution

Problem 7 :

The zeros of the polynomial

x² + 7x + 10 are

a)   2 and 5     b) -2 and 5     c) -2 and -5     d) 2 and -5

Solution

Problem 8 :

The relationship between the zeros and coefficients of the quadratic polynomial ax² + bx + c is

a)   α · β = c/a     b) α · β = -b/a

c) α · β = -c/a     d) α · β = b/a

Solution

Problem 9 :

The zeros of the polynomial x² - 3 are

a)   2 and 5     b) -2 and 5

c) -2 and -5     d) none of the above

Solution

Problem 10:

The number of zeros of the polynomial from the graph is

zeroesofpolynomialq10

a)   0     b) 1     c) 2     d) 3

Solution

Problem 11 :

A quadratic polynomial whose sum and product of zeros are -3 and 2 is

a)   x²  - 3x + 2     b) x² + 3x + 2

c) x² + 2x - 3     d) x² + 2x + 3

Solution

Problem 12 :

The zeros of the quadratic polynomial x² + kx + k, k ≠ 0,

a. Cannot both be positive

b. Cannot both be negative

c. Are always unequal

d. Are always equal

Solution

Answer Key

1)  k = 9, option b

2) Which is only possible when a and c have the same sign , option c

3)  2, option c

4)  k = -10, option (b)

5)  p(x) = x² - x - 12, option (d)

6)  α + β = -b/a, option (b)

7)  x = -2 or x = -5, option (c)

8)  α · β = c/a, option (a)

9)  None of these, option (d)

10)  0, option (a)

11)  x² + 3x + 2, option (b)

12) both zeros are negative, , option (b)

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More