Rotating the shape means moving them around a fixed point. There are two directions
i) Clockwise
ii) Counter clockwise (or) Anti clockwise
The shape itself stays exactly the same, but its position in the space will change.
90° clockwise 90° counter clockwise 180° 270° clockwise 270° counter clockwise |
(x, y) ==> (y, -x) (x, y) ==> (-y, x) (x, y) ==> (-x, -y) (x, y) ==> (-y, x) (x, y) ==> (y, -x) |
Problem 1 :
Rotation 90° clockwise about the origin.
Solution :
Marking the coordinate,
Z (0, -4), J (0, -5), T (4, -3) and S (3, -5)
Rotation ==> 90° clockwise
Rule :
(x, y) ==> (y, -x)
Z (0, -4) ==> Z' (-4, 0)
J (0, -5) ==> J' (-5, 0)
T (4, -3) ==> T' (-3, -4)
S (3, -5) ==> S'(-5, -3)
Problem 2 :
Rotation 180° clockwise about the origin.
Solution :
Marking the coordinate,
E (-1, 0), R ( -3, -1), Q (-2, -4) and A (2, -3)
Rotation ==> 180°
Rule :
(x, y) ==> (-x, -y)
E (-1, 0) ==> E' (1, 0)
R (-3, -1) ==> R' (3, 1)
Q (-2, -4) ==> Q' (2, 4)
A (2, -3) ==> A'(-2, 3)
Problem 3 :
Rotation 90° counter clockwise about the origin.
Solution :
Marking the coordinate,
D (4, 2), F (4, 5) and B (5, 2).
Rotation ==> 90° counter clockwise
Rule :
(x, y) ==> (-y, x)
D (4, 2) ==> D' (-2, 4)
F (4, 5) ==> F' (-5, 4)
B (5, 2) ==> B' (-2, 5)
Problem 4 :
Rotation 90° counter clockwise about the origin.
Solution :
Marking the coordinate,
U (-4, 4), W (-5, 4), Q (-4, 0) and P (0, 2).
Rotation ==> 90° counter clockwise
Rule :
(x, y) ==> (-y, x)
U (-4, 4) ==> U' (-4, -4)
W (-5, 4) ==> W' (-4, -5)
Q (-4, 0) ==> Q' (0, -4)
P (0, 2) ==> P' (-2, 0)
Problem 5 :
Rotation 180° about the origin.
Solution :
Marking the coordinate,
Y (-4, 3), B (-1, 5) and E (-3, 0)
Rotation ==> 180°
Rule :
(x, y) ==> (-x, -y)
Y (-4, 3) ==> Y' (4, -3)
B (-1, 5) ==> B' (1, -5)
E (-3, 0) ==> E' (3, 0)
Problem 6 :
Rotation 90° clockwise about the origin.
Solution :
Marking the coordinate,
R (-2, 3), M (-3, 0) and X (-1, 0)
Rotation ==> 90° clockwise
Rule :
(x, y) ==> (y, -x)
R (-2, 3) ==> R' (3, 2)
M (-3, 0) ==> M' (0, 3)
X (-1, 0) ==> X' (0, 1)
May 21, 24 08:51 PM
May 21, 24 08:51 AM
May 20, 24 10:45 PM