Problem 1 :
Using vector method, prove that
cos (α - β) = cos α cos β + sin α sin β
Solution :
In the unit circle with center O, OA and OB are radii.
∠AOX = α, ∠BOX = β and ∠AOB = α - β
AL and AM are perpendiculars to the x-axis.
In triangle OAL,
OA = hypotenuse = 1, AL = opposite side, OL = adjacent side
A(x-coordinate, y-coordinate)
cos α = Adjacent side / hypotenuse
x-coordinate : cos α = OL / OA cos α = OL / 1 OL = cos α |
y-coordinate : sin α = AL / OA sin α = AL / 1 AL = sin α |
A(x-coordinate, y-coordinate)
This is how, A(cos α, sin α)
In triangle OBM,
OB = hypotenuse = 1, BM = opposite side, OM = adjacent side
B(x-coordinate, y-coordinate)
cos β = Adjacent side / hypotenuse
sin β = Opposite side / hypotenuse
x-coordinate : cos β = OM / OB cos β = OM / 1 OM = cos β |
y-coordinate : sin β = BM / OB sin β = BM / 1 BM = sin β |
B(x-coordinate, y-coordinate)
This is how, B(cos β, sin β)
Problem 2 :
Prove by vector method that
sin (α + β) = sin α cos β + cos α sin β
Solution :
In the unit circle with center O, OA and OB are radii.
∠AOX = α, ∠BOX = β and ∠AOB = α + β
AL and AM are perpendiculars to the x-axis.
In triangle OAL,
OA = hypotenuse = 1, AL = opposite side, OL = adjacent side
A(x-coordinate, y-coordinate)
cos α = Adjacent side / hypotenuse
x-coordinate : cos α = OL / OA cos α = OL / 1 OL = cos α |
y-coordinate : sin α = AL / OA sin α = AL / 1 AL = sin α |
A(x-coordinate, y-coordinate)
This is how, A(cos α, sin α)
In triangle OBM,
OB = hypotenuse = 1, BM = opposite side, OM = adjacent side
B(x-coordinate, y-coordinate)
cos β = Adjacent side / hypotenuse
sin β = Opposite side / hypotenuse
x-coordinate : cos β = OM / OB cos β = OM / 1 OM = cos β |
y-coordinate : sin β = BM / OB sin β = BM / 1 BM = sin β |
B(x-coordinate, -y-coordinate)
This is how, B(cos β, -sin β)
May 21, 24 08:51 PM
May 21, 24 08:51 AM
May 20, 24 10:45 PM