USING PROPERTIES OF EXPONENTS PRACTICE PROBLEMS FOR SAT

Problem 1 :

If 3x - 3 = 27, what is the value of x ?

(a)  0   (b)  3   (c)  6   (d)  9

Solution :

3x - 3 = 27

3x - 3 = 33

Equating the powers, we get

x - 3 = 3

x = 3 + 3

x = 6

Problem 2 :

If 2781 = 3x, what is the value of x ?

(a)  27    (b)  84   (c)  100    (d) 243

Solution :

2781 = 3x

Decomposing 27, we get 27 = 33

(33)81 = 3x

3243 = 3x

Equating the powers, we get

x = 243

Problem 3 :

If y > 0 and 

yby1/2 = 1y2

what is the value of b ?

(a) -3/2   (b)  -5/2   (c)  3/2    (d)  5/2

Solution :

yby1/2 = 1y2yb - 12 = y-2Equating the power, we getb - 12 = -2b = -2 + 12b = -32

Problem 4 :

k2 x2a = x2a + 2

In the equation above, k, x and a are positive integers greater than 1. What is the value of x - k ?

(a)  -1    (b)  0     (c)  1   (d) 2

Solution :

k2 x2a = x2a + 2

k2 x2a = x2a x

Dividing by x2a on both sides.

k2 = x

x2 - k2 = 0

(x + k)(x - k) = 0

x - k = 0

Problem 5 :

xa2xb2x2ab = x25

x > 1, which of the following could be the value of a - b ?

(a)  3   (b)  4    (c)  5    (d)  6

Solution :

xa2xb2x2ab = x25xa2 + b2x2ab = x25xa2 + b2x-2ab= x25xa2 + b2-2ab= x25x(a-b)2= x25(a-b)2 = 25a - b = 25a -b = ±5

So, option c is correct.

Problem 6 :

If 

x+xx×x×x×n = 1

where n ≠ 0

Solution :

x+xx×x×x×n = 12xnx3 = 12nx2 = 1Multiply by n on both sides.n×2nx2 = 1×n2x2 = n

Problem 7 :

The expression

4h8b k3

where h > 0 and k > 0 is equivalent to which of the following ?

(a) h12b k43(b) h2b k34(c) h4b k-1(d) h4b k32

Solution :

= 4h8b k3= h8bk3 14= h8b14 k314 = h8b × 14 k14 = h2b k34

Problem 8 :

If c-3d = 1/64 and c and d are positive integers, what is one possible value of d ?

Solution :

c-3d = 1/64

64 can be written as 43

c-3d = 1/43

c-3d = 4-3

(cd)-3 = 4-3

Powers are equal, so equating bases 

cd = 4

cd = 41

c = 4 and d = 1

cd = 22

c = 2 and d = 2

Problem 9 :

Simplify the following :

3x2 x3

Solution :

3x2 x3 = 3x2×x3= x213×x312= x13 × x12= x23 × x32= x23 +32= x4+96= x136

Problem 10 :

If m = 1/√n, where m > 0 and n>0, what is n in terms of m ?

Solution :

m = 1/√n

Take square on both sides.

m2 = 1/n

n = 1/m2

Problem 11 :

If c-1/3 = x, where c > 0 and x > 0, then find the value of c in terms of x.

Solution :

c-1/3 = x

Moving the power to the other side of the equal sign,

c = x-3/1

c = x-3

c = 1/x3

Problem 12 :

If a-1/2 = 3, what is the value of a ?

(a) -9    (b)  1/9   (c)  1/3   (d) 9

Solution :

a-1/2 = 3

Moving the power to the other side of the equal sign, we get

a = 3-2/1

a = 3-2

a = 1/32

a = 1/9

Problem 13 :

Let n = 12 + 14 + 16 + 18 + ............ + 150

what is value of n ?

(a)  10   (b)  20   (c)  25   (d) 30

Solution :

n = 12 + 14 + 16 + 18 + ............ + 150

Considering the powers, they are multiples of 2.

n = 1 + 1 + 1 + .......+ 1(25 terms)

n = 25

Problem 14 :

If 42n + 3 = 8n + 5, what is the value of n ?

(a)  6   (b)  7   (c)  8    (d)  9

Solution :

42n + 3 = 8n + 5

Write the bases 4 and 8 as multiples of 2.

(22)2n + 3 = (23)n + 5

22(2n + 3)23(n + 5)

Since bases are equal, we can equate the powers.

2(2n + 3) = 3(n + 5)

4n + 6 = 3n + 15

4n - 3n = 15 - 6

n = 9

Problem 15 :

If 2x/2y = 23, then x must equal 

(a) y + 3   (b)  y - 3    (c)  3 - y     (d)  3y

Solution :

2x/2y = 23

2x 2-y = 23

2x-y = 23

Equating the powers, we get

x - y = 3

x = 3 + y

So, the answer is y + 3.

Problem 16 :

If x2 = y3, for what value of z does x3z = y9 ?

(a) -1   (b)  0    (c)  1     (d)  2

Solution :

x2 = y3

Raise power 3 on both sides.

(x2)3 = (y3)3

x6 = y ---(1)

Comparing with x3z = y9 ---(2)

(1) = (2)

 x3z = x6

3z = 6

z = 2

Problem 17 :

If 2x + 3 - 2x = k(2x, what is the value of k ?

(a) -1   (b)  0    (c)  1     (d)  2

Solution :

2x + 3 - 2x = k(2x

2x 232xk(2x

2x (23 - 1) = k(2x

Dividing by 2x on both sides, we get

 (23 - 1) = k

k = 7

Problem 18 :

If xac xbc = x30, x > 1 and a + b = 5, what is the value of c ?

(a) 3   (b)  5    (c)  6     (d)  10

Solution :

xac xbc = x30

x(ac+bc) = x30

Equating the powers, we get

ac + bc = 30

c(a + b) = 30

Here the value of a + b is 5

c(5) = 30

c = 30/5

c = 6

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More