Here we see the list of double angle formulae.
Problem 1 :
Given that sin A = 3/5 and cos A = -4/5, find
i) sin 2A ii) cos 2A
Solution :
i) sin 2A
To evaluate sin 2A, we can use double angle formula.
sin 2A = 2 sin A cos A
sin 2A = 2(3/5) (-4/5)
= -24/25
ii) cos 2A :
cos 2A = cos2 A - sin2 A.
= (cos A)2 - (sin A)2
= (-4/5)2 - (3/5)2
= 16/25 - 9/25
= (16 - 9)/25
= 7/25
Problem 2 :
Given that sin A = -5/13 and cos A = 12/13, find tan 2A.
Solution :
Problem 3 :
If A is acute angle and cos 2A = 3/4, find the values of
i) cos A
ii) sin A
Solution :
cos 2A = 3/4
cos 2A = 2 cos2A - 1
3/4 = 2 cos2A - 1
2 cos2A = (3/4) + 1
2 cos2A = (7/4)
cos2A = (7/8)
ii) sin A
cos 2A = 1 - 2 sin2A
3/4 = 1 - 2 sin2A
2 sin2A = 1 - (3/4)
2 sin2A = 1/4
sin2A = 1/8
sin A = 1/2√2
Problem 4 :
If sin A = 4/5 and cos A = 3/5, find the values of
i) sin 2A
ii) cos 2A
Solution :
i) sin 2A = 2 sin A cos A
= 2 (4/5) (3/5)
sin 2A = 24/25
ii) cos 2A = cos2 A - sin2 A
= (cos A)2 - (sin A)2
= (4/5)2 - (3/5)2
= (16/25) - (9/25)
= 7/25
Problem 5 :
If sin A = -2/3 where π < A < 3π/2, find the value of cos A and hence the value of sin 2A.
Solution :
From the given information, it is clear the angle lies on 3rd quadrant. In 3rd quadrant, for tangent and its reciprocal only cotangent will have positive sign.
Problem 6 :
If cos A = 2/5, where 3π/2 < A < 2π, find the value of sin A hence find the value of sin 2A.
Solution :
From the given information, it is clear the angle lies on 4th quadrant. In 4th quadrant, for cosine and its reciprocal only secant will have positive sign.
Problem 7 :
If A is acute cos 2A = -7/9, find without calculator
i) cos A
ii) sin A
Solution :
i) cos A
cos 2A = 2 cos2A - 1
(-7/9) = 2 cos2A - 1
(-7/9) + 1 = 2 cos2A
2 cos2A = 2/9
cos2A = 1/9
cos A = √(1/9)
cos A = 1/3
ii) sin A
cos 2A = 1 - 2 sin2A
(-7/9) = 1 - 2 sin2A
2 sin2A = 1 + (7/9)
2 sin2A = 16/9
sin2A = 8/9
sin A = √(8/9)
sin A = 2√2/3
Problem 8 :
Find the value of
Solution :
Problem 9 :
Show that
(sin A + cos A)2 = 1 + sin 2A
Solution :
L.H.S
= (sin A + cos A)2
Finding expansion using algebraic identity, we get
= sin2 A + cos2 A + 2sin A cos A
= 1 + sin 2A
Problem 10 :
Show that
cos4A - sin4A = cos 2A
Solution :
L.H.S
= cos4A - sin4A
= (cos2A)2 - (sin2A)2
Using the algebraic identity, a2 - b2 = (a + b)(a - b)
= (cos2A + sin2A)(cos2A - sin2A)
= 1(cos 2A)
= cos 2A
May 21, 24 08:51 PM
May 21, 24 08:51 AM
May 20, 24 10:45 PM