USE DOUBLE ANGLE IDENTITIES TO FIND EXACT VALUE

Here we see the list of double angle formulae.

double-angle-formula

Problem 1 :

Given that sin A = 3/5 and cos A = -4/5, find 

i) sin 2A    ii)  cos 2A

Solution :

i) sin 2A 

To evaluate sin 2A, we can use double angle formula.

sin 2A = 2 sin A cos A

sin 2A = 2(3/5) (-4/5)

= -24/25

ii)  cos 2A :

cos 2A = cos2 A - sin2 A.

= (cos A)2 - (sin A)2

= (-4/5)2 - (3/5)2

= 16/25 - 9/25

= (16 - 9)/25

= 7/25

Problem 2 :

Given that sin A = -5/13 and cos A = 12/13, find tan 2A.

Solution :

tan 2A =2 tanA1-tan2A ----(1)tanA= sin Acos AtanA= -5131213 ≡> -512Applying the value of tan A in (1)tan 2A =2 (-5/12)1--5122 =(-5/6)1-25144=(-5/6)144 - 25144=-56119144tan 2A= -120119

Problem 3 :

If A is acute angle and cos 2A = 3/4, find the values of 

i) cos A 

ii) sin A

Solution :

cos 2A = 3/4

cos 2A = 2 cos2A - 1

3/4 = 2 cos2A - 1

2 cos2A = (3/4) + 1

2 cos2A = (7/4)

cos2A = (7/8)

cos A = 722

ii) sin A

cos 2A = 1 - 2 sin2A

3/4 = 1 - 2 sin2A

2 sin2A = 1 - (3/4)

2 sin2A = 1/4

sin2A = 1/8

sin A = 1/2√2

Problem 4 :

If sin A = 4/5 and cos A = 3/5, find the values of 

i) sin 2A

ii) cos 2A

Solution :

i) sin 2A = 2 sin A cos A

= 2 (4/5) (3/5)

sin 2A = 24/25

ii) cos 2A = cos2 A - sin2 A

= (cos A)2 - (sin A)2

= (4/5)2 - (3/5)2

= (16/25) - (9/25)

= 7/25

Problem 5 :

If sin A = -2/3 where π < A < 3π/2, find the value of cos A and hence the value of sin 2A.

Solution :

From the given information, it is clear the angle lies on 3rd quadrant. In 3rd quadrant, for tangent and its reciprocal only cotangent will have positive sign. 

cos A = 1-sin2A= 1--232= 1-49= 59cos A= -53sin 2A= 2 sin A cos A= 2×-23-53sin 2A= 459

Problem 6 :

If cos A = 2/5, where 3π/2 < A < 2π, find the value of sin A hence find the value of sin 2A.

Solution :

From the given information, it is clear the angle lies on 4th quadrant. In 4th quadrant, for cosine and its reciprocal only secant will have positive sign. 

sin A = 1-cos2A= 1-252= 1-425= 2125sin A= -215sin 2A= 2 sin A cos A= 2×-21525sin 2A= -42125

Problem 7 :

If A is acute cos 2A = -7/9, find without calculator 

i) cos A

ii) sin A

Solution :

i) cos A

cos 2A = 2 cos2A - 1

(-7/9) = 2 cos2A - 1

(-7/9) + 1 = 2 cos2A

2 cos2A = 2/9

cos2A = 1/9

cos A = √(1/9)

cos A = 1/3

ii) sin A

cos 2A = 1 - 2 sin2A

(-7/9) = 1 - 2 sin2A

2 sin2A = 1 + (7/9)

2 sin2A = 16/9

sin2A = 8/9

sin A = √(8/9)

sin A = 2√2/3

Problem 8 :

Find the value of 

Solution :

= cos π12+sin π122Expand using algebraic identity(a+b)2 = a2+2ab+b2= cos2 π12+sin2 π12+2 sin π12cos π12= 1+sin 2×π12= 1+sin π6= 1 + 12= 32

Problem 9 :

Show that

(sin A + cos A)2 = 1 + sin 2A

Solution :

L.H.S

= (sin A + cos A)2

Finding expansion using algebraic identity, we get

= sin2 A + cos2 A + 2sin A cos A

= 1 + sin 2A

Problem 10 :

Show that

cos4A - sin4A = cos 2A

Solution :

L.H.S

= cos4A - sin4A

= (cos2A)2 - (sin2A)2

Using the algebraic identity, a2 - b2 = (a + b)(a - b)

= (cos2A + sin2A)(cos2A - sin2A)

= 1(cos 2A)

= cos 2A

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More