Use Double Angle Formula to Find Exact Value Worksheet

Problem 1 :

Given that sin A = 3/5 and cos A = -4/5, find 

i) sin 2A    ii)  cos 2A

Solution

Problem 2 :

Given that sin A = -5/13 and cos A = 12/13, find tan 2A.

Solution

Problem 3 :

If A is acute angle and cos 2A = 3/4, find the values of 

i) cos A 

ii) sin A

Solution

Problem 4 :

If sin A = 4/5 and cos A = 3/5, find the values of 

i) sin 2A

ii) cos 2A

Solution

Problem 5 :

If sin A = -2/3 where π < A < 3π/2, find the value of cos A and hence the value of sin 2A.

Solution

Problem 6 :

If cos A = 2/5, where 3π/2 < A < 2π, find the value of sin A hence find the value of sin 2A.

Solution

Problem 7 :

If A is acute cos 2A = -7/9, find without calculator 

i) cos A

ii) sin A

Solution

Problem 8 :

Find the value of 

Solution

Problem 9 :

Show that

(sin A + cos A)2 = 1 + sin 2A

Solution

Problem 10 :

Show that

cos4A - sin4A = cos 2A

Solution

Answer Key

1)  i) sin 2A = -24/25     ii)  cos 2A = 7/25

2)  tan 2A = - 120/119

3)  i)  cos A = √7 / 2√2      ii) sin A = 1/2√2

4)  i)  sin 2A = 24/25,     ii)  cos 2A =  7/25

5)  sin 2A = 4√5/9

6)  sin 2A = -4√21/25

7)  i) cos A = 1/3     ii) sin A = 2√2/3

8)  3/2  

double-angle-trig-identites-worksheet

Solution

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More