THERORY OF EQAUTIONS PRACTICE PROBLEMS

Problem 1 :

A zero of x3 + 64 is

(1) 0     (2)  4    (3)  4i     (4)  -4

Solution :

x3 + 64 = 0

x3 = -64

x3 = (-4)3

Powers are equal, then equate the bases.

x = -4

So, option (4) is correct.

Problem 2 :

If f and g are polynomials of degree m and n respectively and if h(x) = (f o g)(x), then the degree of h is

(1) mn     (2)  m+n   (3)  mn     (4) nm

Solution :

Let f(x) = x + 2

Degree = 1

g(x) = x2 + 3

degree = 2

(fog)(x) = f[g(x)]

= f[x2 + 3]

= x2 + 3 + 2

degree of (fog)(x) = degree of f(x) x degree of g(x)

= 2 x 1

= 2

Degree of (fog)(x) is mn.

Problem 3 :

A polynomial equation in x of degree n always has 

(1)  n distinct roots      (2) n real roots    (3)  n complex roots

(4) at most one root

Solution :

The polynomial which has the highest exponent of n will have n roots. Those roots may be

  • sometimes real.
  • sometimes imaginary
  • sometimes real and imaginary

In this case options (2), (3) and (4) are incorrect. So, option (1) is correct.

Problem 4 :

If α, β and γ are the zeros of x3 + px2 + qx + r, then Σ 1/α is

(1)  -q/r      (2) -p/r    (3)  q/r     (4) -q/r

Solution :

Σ 1/α = 1/α + 1/β + 1/γ

= (βγ + αγ + βα) / αβγ

= (αβ + βγ + αγ) / αβγ -----(1)

x3 + px2 + qx + r

Comparing the given equation with  ax3 + bx2 + cx + d

a = 1, b = p, c = q and d = r

αβ + βγ + αγ = c/a

= q/1

αβ + βγ + αγ = q

αβγ = -d/a

= -r/1

αβγ = -r

Applying the above values in (1), we get

= q / (-r)

= -q/r

So, option (1) is correct.

Problem 5 :

According to the rational root theorem, which number is not possible rational zero of

4x7 + 2x4 - 10x3 - 5 ?

(1)  -1      (2) 5/4    (3)  4/5     (4) 5

Solution :

According to our notations, an = 4 and a0 = -5. If p/q is a zero of the polynomial, then as (p, q) = 1, p must divide 5 and q must divide 4. 

Possible values of p are ±1 and ±5

Possible values of q are ±1, ±2 and ±4

Possible roots q are ±1, ±5, ±1/2, ±5/2, ±1/4, ±5/4

In the above roots, 4/5 is not one of the values. So, option (3) is correct.

Problem 6 :

The polynomial x3 - kx2 + 9x has three real zeros if and only if k satisfies

(1)  |k| ≤ 6        (2) |k| = 0    (3)  |k| > 6     (4) |k|  ≥ 6

Solution :

Let P(x) = x3 - kx2 + 9x

= x(x2 - kx + 9)

b2 - 4ac = (-k)2 - 4(1)(9)

= k2 - 36

Using nature of roots,

  • b2 - 4ac > 0, then the roots are real.
  • b2 - 4ac = 0, then the roots are equal.
  • b2 - 4ac < 0, then the roots are unreal.

b2 - 4ac 0

k2 - 36 0

k2  36

k ≥ 6

So, option (4) is correct.

Problem 7 :

The number of real numbers in [0, 2π] satisfying

sin4x - 2sin2x + 1 is

(1)  2       (2) 4    (3)  1     (4) 

Solution :

sin4x - 2sin2x + 1 = 0

Let t = sin2x

(sin2x)2 - 2sin2x + 1 = 0

t2 - 2t + 1 = 0

(t - 1)(t - 1) = 0

t = 1 and t = 1

 sin2x = 1

sin x = √1

sin x = ±1

x = sin-1(1) and x = sin-1(-1)

x = π/2 and x = 3π/2

The above equation has two solutions.

So, the answer is 2, option (1).

Problem 8 :

If x3 + 12x2 + 10ax + 1999 definitely has a positive zero, if and only if

(1)  a  0        (2) a > 0    (3)  a < 0     (4) a ≤ 0

Solution :

Let p(x) = x3 + 12x2 + 10ax + 1999

The above cubic polynomial will have 3 zeros.

Using descartes rule,

  • if a > 0, then there is no changes in sign. Then 0 positive roots will be there.
  • if a < 0, then the number of sign changes will be 2. So, it will have 2 real roots.

So, the answer is a < 0 , option (3).

Problem 9 :

The polynomial x3 + 2x + 3 has

(1) one negative and two imaginary zeros

(2)  one positive and two imaginary zeros

(3) three real zeros     (4)  no zeros.

Solution :

Let p(x) = x3 + 2x + 3

No sign changes, there is no positive zeros.

p(-x) = (-x)3 + 2(-x) + 3

p(-x) = -x3 - 2x + 3

Number of sign changes = 1

There is 1 negative root.

0 positive roots, 1 negative roots and 2 imaginary roots.

So, option (1) is correct.

Problem 10 :

The number of positive zeros of the polynomial

is

(1)         (2) n    (3)  < n     (4) r

Solution :

Since the highest exponent of the polynomial is n, it will have n zeros.

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More