STATE DOMAIN AND RANGE Y-INTERCEPT OF EXPONENTIAL FUNCTION

Domain :

The set of possible defined values for the function is domain.

Range :

The set of output values are range.

To find domain and range of the exponential function, first we can find the horizontal asymptote.

f(x) = a (b(x+h)) + k

Here y = k is the horizontal asymptote.

Graph each of the following and find the domain and range for each function.

Problem 1 :

f(x) = 2x

Solution :

To graph the given function, by applying some of the random values of x. We get,

x

-2

-1

0

1

2

y

1/4 = 0.25

1/2 = 0.5

20 = 1

21 = 2

22 = 4

graph-of-2power-x

By observing  the graph,

The function is defined for all values of x. So, domain is 

(-∞, ∞)

The function is defined, for all positive values of y. So, the range is

(0, ∞)

Problem 2 :

f(x) = 2x+5 - 5

Solution :

To graph the given function, by applying some of the random values of x. We get,

x

-2

-1

0

1

y

3

11

27

59

exponential-func-graph-q1

Horizontal asymptote :

y = -5

Domain = (-∞, ∞)

Range = (-5, ∞)

Problem 3 :

f(x) = 3-x

Solution :

To graph the given function, by applying some of the random values of x. We get,

x

-2

-1

0

1

2

y

9

3

1

1/3

1/9

exponential-func-graph-q2.png

Horizontal asymptote :

y = 0

Domain = (-∞, ∞)

Range = (0, ∞)

Problem 4 :

f(x) = -2-x

Solution :

To graph the given function, by applying some of the random values of x. We get,

x

-2

-1

0

1

2

y

-4

-2

-1

-1/2

-1/4

exponential-func-graph-q3.png

Horizontal asymptote :

y = 0

Domain = (-∞, ∞)

Range = (-∞, 0)

Problem 5 :

Sketch the graph of the function

y = 4 (2)x

Solution :

y = 4 (2)x

The given function is in the form of y = a(b)x

Here a = 4 and b = 2

x

-2

-1

0

1

2

y

1

2

4

8

16

exponential-func-graph-q4.png

Horizontal asymptote :

y = 0

Domain = (-∞, ∞)

Range = (0, ∞)

Problem 6 :

Sketch the graph of the function

y = 5 (2)x

Solution :

y = 5 (2)x

The given function is in the form of y = a(b)x

Here a = 5 and b = 2

x

-2

-1

0

1

2

y

5/4

5/2

5

10

20

exponential-func-graph-q5.png

Problem 7 :

Use f(x) = 2x to obtain the graph of g(x) = -2x+3 - 1, find

i) Horizontal asymptote

ii)  Domain 

iii) Range

Solution :

Comparing f(x) = 2x and g(x) = -2x

It is a reflection across y-axis. 

Comparing the function g(x) with

= a(bx+h) + k

a = 1, b = 2, h = -3 and k = -1

We move the graph 3 units to the left and move it down 1 unit.

f(x) = 2x

i) Horizontal asymptote

y = 0

ii) Domain

All real values

(-∞, ∞)

iii) Range

All positive values

(0, ∞)

g(x) = -2x+3 - 1

i) Horizontal asymptote 

y = -1

ii) Domain

All real values

(-∞, ∞)

iii) Range

Since it reflection

(-∞, -1)

exponential-func-graph-q6.png

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More