SOLVING SPECIAL RIGHT TRIANGLES WITH MULTI VARIABLES

There are two types of special right triangles

  • 30 - 60 - 90 right triangle
  • 45 - 45 - 90 right triangle
454590righttriangle

In a 45-45-90 triangle

the hypotenuse is 2 times as long as a leg

An isosceles right triangle is also called a 45-45-90 triangle

306090righttriangle

In a 30 - 60 - 90 triangle,

the hypotenuse = twice as long as the shorter leg

and

the longer leg = 3 times as long as the shorter leg.

Find the value of each variable. Leave your answer in simplest radical form.

Problem 1 :

specialrighttriwithmvq1

Triangle ABC is a 30º - 60º - 90º triangle.

Finding the value of x :

By 30º - 60º - 90º triangle theorem,

Hypotenuse = 2 shorter length

Here, hypotenuse = x, and shorter length = 1.

x = 2 1

x = 2

So, the value of x is 2.

Finding the value of y :

By 30º - 60º - 90º triangle theorem,

longer length = √3 shorter length

Here, longer length = y, and shorter length = 1.

y = √3 1

y = √3

So, the value of y is √3.

Problem 2 :

specialrighttriwithmvq2.png

ABC is a 30º - 60º - 90º triangle.

Finding the value of x :

By 30º - 60º - 90º triangle theorem,

Hypotenuse = 2 shorter length

Here, hypotenuse = 30, and shorter length = x.

30 = 2 x

Dividing 2 on both sides.

2x/2 = 30/2

x = 15

So, the value of x is 15.

Finding the value of y :

By 30º - 60º - 90º triangle theorem,

longer length = √3 shorter length

Here, longer length = y, and shorter length (x) = 15.

y = √3 15

y = 15√3

So, the value of y is 15√3.

Problem 3 :

specialrighttriwithmvq3.png

Triangle  ABC is a 30º - 60º - 90º triangle.

Finding the value of d :

By 30º - 60º - 90º triangle theorem,

longer length = √3 shorter length

Here, longer length = 11√3, and shorter length = d.

11√3 = √3 d

Dividing √3 on both sides.

11√3/√3 = √3/√3d

d = 11

So, the value of d is √3.

Finding the value of c :

By 30º - 60º - 90º triangle theorem,

Hypotenuse = 2 shorter length

Here, hypotenuse = c, and shorter length (d) = 11.

c = 2 11

c = 22

So, the value of c is 22.

Problem 4 :

specialrighttriwithmvq4.png

ABC is a 30º - 60º - 90º triangle.

Finding the value of y :

By 30º - 60º - 90º triangle theorem,

longer length = √3 shorter length

Here, longer length = 9, and shorter length = x.

9 = √3 x

x = 9/√3

Rationalizing the denominator, we get

x = 9√3/3

x = 3√3

Finding the value of y :

By 30º - 60º - 90º triangle theorem,

Hypotenuse = 2 shorter length

Here, hypotenuse = y, and shorter length (x) = 3√3

y = 2 3√3

y = 6√3

So, the value of y is 6√3

Problem 5 :

specialrighttriwithmvq5.png

Solution :

specialrighttriwithmvq5a.png

Finding the value of x :

ABD is a 30º - 60º - 90º triangle.

AD = CD

x = 5

Finding the value of y :

ADC is a 45º - 45º - 90º triangle.

Hypotenuse = 2 shorter length

Here, hypotenuse = y, and shorter length (x) = 5.

y = 2 5

y = 10

So, the value of y is 10.

Finding the value of z :

ABD is a 30º - 60º - 90º triangle.

longer length = √3 shorter length

Here, longer length (x) = 5, and shorter length = z.

5 = √3 z

Divide each side by √3.

5/√3 = √3/√3 z

5/√3 = z

Multiply numerator and denominator by √3.

5/√3 √3/√3 = z

5√3/3 = z

So, the value of z is 5√3/3.

Finding the value of w :

ABD is a 30º - 60º - 90º triangle.

Hypotenuse = 2 shorter length

Here, hypotenuse = w, and shorter length (z) = 5√3/3.

w = 2 5√3/3

w = 10√3/3

So, the value of w is 10√3/3.

Problem 6 :

specialrighttriwithmvq6.png

Solution :

Drawing perpendicular from one vertex, we may get special right triangle.

specialrighttriwithmvq6a.png

AD2 = DE2 + AE2

a2 = 22 + (2√3)2

a2 = 4 + (4 × 3)

= 4 + 12

= 16

a = √16

a = 4

AB = DC DE

b = 5 2

b = 3 So, the value of a and b are 4 and 3 respectively.

Problem 7 :

specialrighttriwithmvq7.png

Solution :

specialrighttriwithmvq7a.png

Triangle ABD is a 30º - 60º - 90º triangle.

Finding the value of q :

longer length = √3 shorter length

Here, longer length = q, and shorter length = 4.

q = 4√3

Finding the value of r :

Hypotenuse = 2 shorter length

Here, hypotenuse = r, and shorter length = 4

r = 2 4

r = 8

Finding the value of p :

ADC is a 45º - 45º - 90º triangle.

AD = CD

q = p

4√3 = p

Finding the value of s :

ADC is a 45º - 45º - 90º triangle.

Using Pythagorean theorem

AC2 = DC2 + AD2

s2 = p2 + q2

= (4√3)2 + (4√3)2

= 16 × 3 + 16 × 3

= 48 + 48

s2 = 96

s = √(16 × 6)

= √(4 × 4 × 6)

s = 4√6

So, the value of p, q, r and s are 4√3, 4√3, 8 and 4√6 respectively.

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More