In geometry, parallel lines can be defined as two lines in the same plane that are at equal distance from each other and never meet. They can be both horizontal and vertical.
We can see parallel lines examples in our daily life like a zebra crossing, the lines of notebooks, and on railway tracks around us.
Here l and m are parallel lines and we see 8 angles are created.
Corresponding angles :
∠1 = ∠5, ∠2 = ∠6, ∠3 = ∠7, ∠4 = ∠8
Vertically opposite angles :
∠1 = ∠4, ∠3 = ∠2, ∠5 = ∠8, ∠7 = ∠6
Alternate interior angles :
∠3 = ∠6, ∠4 = ∠5
Co interior angles are supplementary :
∠3 + ∠5 = 180
∠4 + ∠6 = 180
Problem 1 :
If the complement of an angle is equal to the supplement of four times the angle, then find the measure of the angle.
Solution :
Let x be the angle.
Complement of an angle is 90º - x.
Supplementary angle is 180º - x.
To find the measure of the angle :
90º - x = 180º – 4x
-x + 4x = 180º – 90º
3x = 90º
Dividing 3 on each sides.
3x/3 = 90º/3
x = 30º
So, the measure of the angle is 30º.
Problem 2 :
In a triangle ∠ABC, ∠A + ∠B = 110º, ∠C + ∠A = 135º, Find ∠A.
Solution :
Sum of interior angles of a triangle = 180º
∠A + ∠B + ∠C = 180º
110º + ∠C = 180º
∠C = 180º - 110º
∠C = 70º
∠B + ∠C + ∠A = 180º
135º + ∠B = 180º
∠B = 180º - 135º
∠B = 45º
∠A + ∠B + ∠C = 180º
∠A + 45º + 70º = 180º
∠A + 115º = 180º
∠A = 180º - 115º
∠A = 65º
Problem 3 :
In the given figure, what value of x will make AOB a line ?
Solution :
∠AOP + ∠BOP = 180º
2x + 30 + 3x = 180º
5x + 30 = 180º
5x = 180 - 30
5x = 150
x = 150/5
x = 30
Problem 4 :
In the given figure, AB//ED, find x.
Solution :
AB and ED is a parallel line.
∠BAC = ∠DCF = 62º (corresponding angles)
∠ECF + ∠DCF = 180º
∠ECF + 62º = 180º
∠ECF = 180º - 62º
∠ECF = 118º
∠ECF is a triangle.
∠ECF + ∠CEF + ∠EFC = 180º
118º + 36º + xº = 180º
154º + xº = 180º
xº = 180º - 154º
xº = 26º
Problem 5 :
Determine the value of x in the given figure if AB||CD||EF
Solution :
∠AOF + ∠OAB = 180 (Cointerior angles) ---(1)
∠DCO + ∠COF = 180 (Cointerior angles) ---(2)
From (1)
∠AOF + 130 = 180
Subtracting 130
∠AOF = 50
From (2)
120 + ∠COF = 180
Subtracting 120, we get
∠COF = 60
x = ∠AOF + ∠COF
x = 50 + 60
x = 110
Problem 6 :
Determine the value of x in the given figure if AB||CD||EF
Solution :
Since EF and CD are parallel,
∠DCE + ∠CEF = 180
∠DCE + x = 180
∠DCE = 180 - x
Since AB and CD are parallel.
∠ABC = ∠BCD (alternate interior angles)
65 = 25 + 180 - x
x = 25 + 180 - 65
x = 140
Problem 7 :
In a triangle if 4∠A = 3∠B = 12∠C, find all the angles.
Solution :
4∠A = 3∠B = 12∠C = x
4∠A = x ∠A = x/4 --- (1) |
3∠B = x ∠B = x/3 --- (2) |
12∠C = x ∠C = x/12 --- (3) |
Sum of interior angle is 180º.
∠A + ∠B + ∠C = 180º
x/4 + x/3 + x/12 = 180
(x/4 × 3/3) + (x/3 × 4/4) + x/12 = 180
(3x + 4x + x)/12 = 180
8x/12 = 180
8x = 180 × 12
8x = 2160
Dividing 8 on both sides.
x = 2160/8
x = 270
Substitute the value x = 270 in equation (1), (2) and (3).
∠A = x/4 ∠A = 270/4 ∠A = 67.5 |
∠B = x/3 ∠B = 270/3 ∠B = 90 |
∠C = x/12 ∠C = 270/12 ∠C = 22.5 |
So, the angles are ∠A
= 67.5º, ∠B
= 90º and ∠C
= 22.5º.
Problem 8 :
The angles of a triangle are in the ratio 3 : 7 : 8. Find the angles of the triangle.
Solution :
Let the angles of a triangle are in the ratio be 3x, 7x, and 8x.
3x + 7x + 8x = 180º
18x = 180º
Dividing 18 on each sides.
x = 180º/18
x = 10º
To find the angles of the triangle :
3 × 10º = 30º
7 × 10º = 70º
8 × 10º = 80º
So, the angles of the triangle is 30º, 70º and 80º.
Problem 9 :
In the given figure find the value of x.
Solution :
In a triangle ∠ABC,
∠ABC = 180 - (∠CAB + ∠ACB)
∠ABC = 180º - (34º + 30º)
∠ABC = 116º
∠ABC + ∠CBD = 180
116 + ∠CBD = 180
∠CBD = 64
In a triangle ∠EBD,
∠EBD + ∠BDE + ∠DEB = 180º
64º + 45º + ∠DEB = 180º
109º + ∠DEB = 180º
∠DEB = 180º - 109º
∠DEB = 71º
∠DEB + x = 180º
71º + x = 180º
x = 180º - 71º
x = 109º
May 21, 24 08:51 PM
May 21, 24 08:51 AM
May 20, 24 10:45 PM