SOLVING PROBLEMS WITH LINES AND ANGLES

In geometry, parallel lines can be defined as two lines in the same plane that are at equal distance from each other and never meet. They can be both horizontal and vertical.

We can see parallel lines examples in our daily life like a zebra crossing, the lines of notebooks, and on railway tracks around us. 

parallellinesandtranintro.png

Here l and m are parallel lines and we see 8 angles are created.

Corresponding angles :

∠1 = ∠5, ∠2 = ∠6, ∠3 = ∠7, ∠4 = ∠8

Vertically opposite angles :

∠1 = ∠4, ∠3 = ∠2, ∠5 = ∠8, ∠7 = ∠6

Alternate interior angles :

∠3 = ∠6, ∠4 = ∠5

Co interior angles are supplementary :

∠3 + ∠5 = 180

∠4 + ∠6 = 180

Problem 1 :

If the complement of an angle is equal to the supplement of four times the angle, then find the measure of the angle.

Solution :

Let x be the angle.

Complement of an angle is 90º - x.

Supplementary angle is 180º - x.

To find the measure of the angle :

90º - x = 180º – 4x

-x + 4x = 180º – 90º

3x = 90º

Dividing 3 on each sides.

3x/3 = 90º/3

x = 30º

So, the measure of the angle is 30º.

Problem 2 :

In a triangle ABC,A + B = 110º, C + A = 135º, Find A.

Solution :

Sum of interior angles of a triangle = 180º

A + B + C = 180º

110º + C = 180º

C = 180º - 110º

C = 70º

B + C + A = 180º

135º + B = 180º

B = 180º - 135º

B = 45º

A + B + C = 180º

A + 45º + 70º = 180º

A + 115º = 180º

A = 180º - 115º

A = 65º

Problem 3 :

In the given figure, what value of x will make AOB a line ?

testonlinandangq3

Solution :

∠AOP + ∠BOP = 180º

2x + 30 + 3x =  180º

5x + 30 =  180º

5x = 180 - 30

5x = 150

x = 150/5

x = 30

Problem 4 :

In the given figure, AB//ED, find x.

testonlinandangq4.png

Solution :

AB and ED is a parallel line.

BAC = DCF = 62º (corresponding angles)

ECF + DCF = 180º

ECF + 62º = 180º

ECF = 180º - 62º

ECF = 118º

ECF is a triangle.

ECF + CEF + EFC = 180º

118º + 36º + xº = 180º

154º + xº = 180º

xº = 180º - 154º

xº = 26º

Problem 5 :

Determine the value of x in the given figure if AB||CD||EF

testonlinandangq5

Solution :

testonlinandangq6.png

∠AOF + ∠OAB = 180 (Cointerior angles) ---(1)

∠DCO + ∠COF = 180 (Cointerior angles) ---(2)

From (1)

∠AOF + 130 = 180

Subtracting 130

∠AOF = 50

From (2)

120 + ∠COF = 180

Subtracting 120, we get

∠COF = 60

x = ∠AOF + ∠COF

x = 50 + 60

x = 110

Problem 6 :

Determine the value of x in the given figure if AB||CD||EF

testonlinandangq7

Solution :

Since EF and CD are parallel,

∠DCE + ∠CEF = 180

∠DCE + x = 180

∠DCE = 180 - x

Since AB and CD are parallel.

∠ABC = ∠BCD (alternate interior angles)

65 = 25 + 180 - x

x = 25 + 180 - 65

x = 140

Problem 7 :

In a triangle if 4A = 3B = 12C, find all the angles.

Solution :

 4A = 3B = 12C = x

4A = x

A = x/4 --- (1)

3B = x

B = x/3 --- (2)

12C = x

C = x/12 --- (3)

Sum of interior angle is 180º.

A + B + C = 180º

x/4 + x/3 + x/12 = 180

(x/4 × 3/3) + (x/3 × 4/4) + x/12 = 180

(3x + 4x + x)/12 = 180

8x/12 = 180

8x = 180 × 12

8x = 2160

Dividing 8 on both sides.

x = 2160/8

x = 270

Substitute the value x = 270 in equation (1), (2) and (3).

A = x/4

A = 270/4

A = 67.5

B = x/3

B = 270/3

B = 90

C = x/12

C = 270/12

C = 22.5

So, the angles are A = 67.5º, B = 90º and C = 22.5º.

Problem 8 :

The angles of a triangle are in the ratio 3 : 7 : 8. Find the angles of the triangle.

Solution :

Let the angles of a triangle are in the ratio be 3x, 7x, and 8x.

3x + 7x + 8x = 180º

18x = 180º

Dividing 18 on each sides.

x = 180º/18

x = 10º

To find the angles of the triangle :

3 × 10º = 30º

7 × 10º = 70º

8 × 10º = 80º

So, the angles of the triangle is 30º, 70º and 80º.

Problem 9 :

In the given figure find the value of x.

testonlinandangq9.png

Solution :

In a triangle ∠ABC,

∠ABC = 180 - (∠CAB + ∠ACB)

∠ABC = 180º - (34º + 30º)

∠ABC = 116º

∠ABC + ∠CBD = 180

116 + ∠CBD = 180

∠CBD = 64

In a triangle ∠EBD,

∠EBD + ∠BDE + ∠DEB = 180º

64º + 45º + ∠DEB = 180º

109º + ∠DEB = 180º

∠DEB = 180º - 109º

∠DEB = 71º

∠DEB + x = 180º

71º + x = 180º

x = 180º - 71º

x = 109º

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More