SOLVING PROBLEMS WITH INVERSE TRIG FUNCTIONS

Problem 1 :

The value of sin-1 (cos x) = 0, 0 ⩽ x ⩽ π is

1) π - x     2)  x - (π/2)      3)  (π/2) - x       4)  x - π

Solution :

sin-1 (cos x) = 0

cos x = sin 0

cos x = 0

cos x = sin ((π/2) - x)

So, the answer is (π/2) - x.

Problem 2 :

If sin-1 x + sin-1y = 2π/3, then cos-1 x + cos-1y is equal to 

1) 2π/3     2)  π/3      3)  π/6       4)  π

Solution :

sin-1 x + sin-1y = 2π/3

π/2 - cos-1 x + π/2 - cos-1 y = 2π/3

- cos-1 x - cos-1 y = 2π/3 - π/2 - π/2

-(cos-1 x + cos-1 y) = 2π/3 - π

cos-1 x + cos-1 y = π - (2π/3)

cos-1 x + cos-1 y = (3π - 2π)/3

cos-1 x + cos-1 y = π/3

So, the value of cos-1 x + cos-1 y is π/3.

Problem 3 :

Solution :

We know the formula,

sin-1x + cos-1y = π/2

cosec-1x = 1/sin-1x

sec-1x = 1/cos-1x

Problem 4 :

If sin-1 x = 2 sin-1α has a solution, then

1) |α| ≤ 1/√2     2)  |α| ≤ 1/√2    3)  |α| < 1/√2      4)  |a| > 1/√2

Solution :

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More