Solve each system by substitution. Check your answers.
Problem 1 :
y = x2 + 4x + 1
y = x + 1
Solution:
Given equations,
y = x2 + 4x + 1 ---> (1)
y = x + 1 ---> (2)
Substitute y = x + 1 in equation (1), we get
x + 1 = x2 + 4x + 1
x2 + 4x - x + 1 - 1 = 0
x2 + 3x = 0
x(x + 3) = 0
x = 0 and x = -3
When x = 0 y = x + 1 y = 0 + 1 y = 1 |
When x = -3 y = x + 1 y = -3 + 1 y = -2 |
So, the points of intersection are (0, 1) and (-3, -2).
Problem 2 :
y = -x2 + 2x + 10
y = x + 4
Solution:
Given equations,
y = -x2 + 2x + 10 ---> (1)
y = x + 4 ---> (2)
Substitute y = x + 1 in equation (1), we get
x + 4 = -x2 + 2x + 10
x2 - 2x + x + 4 - 10 = 0
x2 - x - 6 = 0
(x + 2) (x - 3) = 0
x = -2 and x = 3
When x = -2 y = x + 4 y = -2 + 4 y = 2 |
When x = 3 y = x + 4 y = 3 + 4 y = 7 |
So, the points of intersection are (-2, 2) and (3, 7).
Problem 3 :
y = -x2 + x - 1
y = -x - 1
Solution:
Given equations,
y = -x2 + x - 1 ---> (1)
y = -x - 1 ---> (2)
Substitute y = -x - 1 in equation (1), we get
-x - 1 = -x2 + x - 1
x2 - x - x - 1 + 1 = 0
x2 - 2x = 0
x(x - 2) = 0
x = 0 and x = 2
When x = 0 y = -x - 1 y = -0 - 1 y = -1 |
When x = 2 y = -x - 1 y = -2 - 1 y = -3 |
So, the points of intersection are (0, -1) and (2, -3).
Problem 4 :
y = 2x2 - 3x - 1
y = x - 3
Solution:
Given equations,
y = 2x2 - 3x - 1 ---> (1)
y = x - 3 ---> (2)
Substitute y = x - 3 in equation (1), we get
x - 3 = 2x2 - 3x - 1
2x2 - 3x - x - 1 + 3 = 0
2x2 - 4x + 2 = 0
2x2 - 2x - 2x + 2 = 0
2(x2 - x - x + 1) = 0
2(x2 - 2x + 1) = 0
2(x - 1)(x - 1) =0
x = 1
When x = 1
y = x - 3
y = 1 - 3
y = -2
So, the points of intersection is (1, -2).
Problem 5 :
y = x2 - 3x - 20
y = -x - 5
Solution:
Given equations,
y = x2 - 3x - 20 ---> (1)
y = -x - 5 ---> (2)
Substitute y = -x - 5 in equation (1), we get
-x - 5 = x2 - 3x - 20
x2 - 3x + x - 20 + 5 = 0
x2 - 2x - 15 = 0
(x + 3) (x - 5) = 0
x = -3 and x = 5
When x = -3 y = -x - 5 y = 3 - 5 y = -2 |
When x = 5 y = -x - 5 y = -5 - 5 y = -10 |
So, the points of intersection are (-3, -2) and (5, -10).
Problem 6 :
y = -x2 - 5x - 1
y = x + 2
Solution:
Given equations,
y = -x2 - 5x - 1 ---> (1)
y = x + 2 ---> (2)
Substitute y = x + 2 in equation (1), we get
x + 2 = -x2 - 5x - 1
x2 + 5x + x + 1 + 2 = 0
x2 + 6x + 3 = 0
x = -3 + 2.45 x = -0.55 When x = -0.55 y = x + 2 y = -0.55 + 2 y = 1.45 |
x = -3 - 2.45 x = -5.45 When x = -5.45 y = x + 2 y = -5.45 + 2 y = -3.45 |
So, the points of intersection are (-0.55, 1.45) and (-5.45, -3.45).
May 21, 24 08:51 PM
May 21, 24 08:51 AM
May 20, 24 10:45 PM