SOLVING LINEAR AND QUADRATIC EQUATIONS

Solve each system by substitution. Check your answers.

Problem 1 :

y = x2 + 4x + 1

y = x + 1

Solution:

Given equations,

y = x2 + 4x + 1 ---> (1)

y = x + 1 ---> (2)

Substitute y = x + 1 in equation (1), we get

x + 1 = x2 + 4x + 1

x2 + 4x - x + 1 - 1 = 0

x2 + 3x = 0

x(x + 3) = 0

x = 0 and x = -3

When x = 0

y = x + 1

y = 0 + 1

y = 1

When x = -3

y = x + 1

y = -3 + 1

y = -2

So, the points of intersection are (0, 1) and (-3, -2).

Problem 2 :

y = -x2 + 2x + 10

y = x + 4

Solution:

Given equations,

y = -x2 + 2x + 10 ---> (1)

y = x + 4 ---> (2)

Substitute y = x + 1 in equation (1), we get

x + 4 = -x2 + 2x + 10

x2 - 2x + x + 4 - 10 = 0

x2 - x - 6 = 0

(x + 2) (x - 3) = 0

x = -2 and x = 3

When x = -2

y = x + 4

y = -2 + 4

y = 2

When x = 3

y = x + 4

y = 3 + 4

y = 7

So, the points of intersection are (-2, 2) and (3, 7).

Problem 3 :

y = -x2 + x - 1

y = -x - 1

Solution:

Given equations,

y = -x2 + x - 1 ---> (1)

y = -x - 1 ---> (2)

Substitute y = -x - 1 in equation (1), we get

-x - 1 = -x2 + x - 1

x2 - x - x - 1 + 1 = 0

x2 - 2x = 0

x(x - 2) = 0

x = 0 and x = 2

When x = 0

y = -x - 1

y = -0 - 1

y = -1

When x = 2

y = -x - 1

y = -2 - 1

y = -3

So, the points of intersection are (0, -1) and (2, -3).

Problem 4 :

y = 2x2 - 3x - 1

y = x - 3

Solution:

Given equations,

y = 2x2 - 3x - 1 ---> (1)

y = x - 3 ---> (2)

Substitute y = x - 3 in equation (1), we get

x - 3 = 2x2 - 3x - 1

2x2 - 3x - x - 1 + 3 = 0

2x2 - 4x + 2 = 0

2x2 - 2x - 2x + 2 = 0

2(x2 - x - x + 1) = 0

2(x2 - 2x + 1) = 0

2(x - 1)(x - 1) =0

x = 1 

When x = 1

y = x - 3

y = 1 - 3

y = -2

So, the points of intersection is (1, -2).

Problem 5 :

y = x2 - 3x - 20

y = -x - 5

Solution:

Given equations,

y = x2 - 3x - 20 ---> (1)

y = -x - 5 ---> (2)

Substitute y = -x - 5 in equation (1), we get

-x - 5 = x2 - 3x - 20

x2 - 3x + x - 20 + 5 = 0

x2 - 2x - 15 = 0

(x + 3) (x - 5) = 0

x = -3 and x = 5

When x = -3

y = -x - 5

y = 3 - 5

y = -2

When x = 5

y = -x - 5

y = -5 - 5

y = -10

So, the points of intersection are (-3, -2) and (5, -10).

Problem 6 :

y = -x2 - 5x - 1

y = x + 2

Solution:

Given equations,

y = -x2 - 5x - 1 ---> (1)

y = x + 2 ---> (2)

Substitute y = x + 2 in equation (1), we get

x + 2 = -x2 - 5x - 1 

x2 + 5x + x + 1 + 2 = 0

x2 + 6x + 3 = 0

x=-b±b2-4ac2aHere a = 1, b=6 and c=3x=-6±62-4(1)(3)2(1)x=-6±36-122x=-6±242x=-6±262x=2-3±62x=-3±6x=-3+6 and x=-3-6

x = -3 + 2.45

x = -0.55

When x = -0.55

y = x + 2

y = -0.55 + 2

y = 1.45

x = -3 - 2.45

x = -5.45

When x = -5.45

y = x + 2

y = -5.45 + 2

y = -3.45

So, the points of intersection are (-0.55, 1.45) and (-5.45, -3.45).

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More