SOLVING LINEAR AND QUADRATIC EQUATIONS GRAPHICALLY

Problem 1 :

y = x2 - 2x - 3

y = 2x - 3

lin-quad-equ-grap-q1

Solution:

y = x2 - 2x - 3

y + 3 = x2 - 2x

y + 3 + 1 = x2 - 2x + 1

y + 4 = x2 - 2x + 1

y + 4 = (x - 1)2

Vertex Form:

y = (x - 1)2 - 4

y = a(x - h)2 + k

Vertex (h, k) = (1, -4)

x-intercept: y = 0

y = x2 - 2x - 3

x2 - 2x - 3 = 0

(x + 1) (x - 3) = 0

x = -1 and x = 3

x-intercept are (-1, 0) and (3, 0).

y-intercept: x = 0

y = (0)2 - 2(0) - 3

y = -3

y-intercept = (0, -3)

Number of solutions : 2

So, the solutions are (0, -3) and (4, 5).

lin-quad-equ-grap-s1

Problem 2 :

y = -(x + 2)2 + 5

y = 5

lin-quad-equ-grap-q2

Solution:

From the given graph, the intersect point is (-2, 5).

Number of solution : 1

So, the solution is (-2, 5).

Problem 3 :

y = x2 - 2x + 4

y = x - 1

lin-quad-equ-grap-q3

Solution:

From the given graph, there is no intersect point.

Number of solution zero.

Problem 4 :

y = (x + 2)2 - 6

y = 4x - 2

lin-quad-equ-grap-q4.png

Solution:

y = (x + 2)2 - 6

Vertex Form:

y = a(x - h)2 + k

Vertex (h, k) = (-2, -6)

y = (x + 2)2 - 6

y = x2 + 4x + 4 - 6

y = x2 + 4x - 2

x-intercept: y = 0

x2 + 4x - 2 = 0

x=-b±b2-4ac2aa=1, b=4 and c=-2x=-4±42-4(1)(-2)2(1)x=-4±16+82x=-4±242x=-4±262x=2-2±62x=-2±6x = -2+6 and x=-2-6x=0.449 and x = -4.449

x-intercept = (0.449, 0) and (-4.449, 0)

y-intercept: x = 0

y = x2 + 4x - 2

y = -2

y-intercept = (0, -2)

lin-quad-equ-grap-s4

Number of solution 1.

So, the intersecting point is (0, -2).

Problem 5 :

y = x2 - 2x - 3

y = -5

lin-quad-equ-grap-q4.png

Solution:

y = x2 - 2x - 3

y + 3 = x2 - 2x

y + 3 + 1 = x2 - 2x + 1

y + 4 = x2 - 2x + 1

y + 4 = (x - 1)2

Vertex Form:

y = (x - 1)2 - 4

y = a(x - h)2 + k

Vertex (h, k) = (1, -4)

x-intercept: y = 0

y = x2 - 2x - 3

x2 - 2x - 3 = 0

(x + 1) (x - 3) = 0

x = -1 and x = 3

x-intercept are (-1, 0) and (3, 0)

y-intercept: x = 0

y = (0)2 - 2(0) - 3

y = -3

y-intercept = (0, -3)

lin-quad-equ-grap-s5

Number of solution zero.

So, there is no solution since the curves are not intersecting each other.

Problem 6 :

y = -x2 + 2x + 7

y = -2x + 2

lin-quad-equ-grap-q4.png

Solution:

y = -x2 + 2x + 7

y = -(x2 - 2x) + 7

y - 7 - 1 = -(x2 - 2x + 1) 

y = -(x - 1)2 + 8

Vertex Form:

y = a(x - h)2 + k

Vertex (h, k) = (1, 8)

x-intercept: y = 0

x=-b±b2-4ac2aa=-1, b=2 and c=7x=-2±22-4(-1)(7)2(-1)x=-2±4+28-2x=-2±32-2x=-2±42-2x=-21±22-2x=1±22x = 1+22 and x=1-22x=3.828 and x = -1.828

x-intercept are (3.828, 0) and (-1.828).

y-intercept: x = 0

y = -x2 + 2x + 7

y = 7

y-intercept = (0, 7)

lin-quad-equ-grap-s6.png

Number of solution = 2

So, the intersecting points are (-1, 4) and (5, -8).

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More