SOLVING EXPONENTIAL EQUATIONS AND INEQUALITIES

To solve exponential equations and inequalities, we have to follow the steps given below.

Step 1 :

Write the given composite numbers which is in the base in exponential form

Step 2 :

Using the rules of exponents, we can do the possible simplification.

Step 3 :

When two bases are equal on both sides of the equal sign, then we can equate the powers.

Step 4 :

By equating the powers using inverse operations, we solve for the unknown.

Solve each inequality :

Problem 1 :

625 ≥ 5a + 8

Solution :

625 ≥ 5a + 8

Writing 625 in exponential form.

5≥ 5a + 8

4 ≥ a + 8

4 - 8 ≥ a

-4 ≥ a

a ≤ -4

So, the solution is a ≤ -4.

Problem 2 :

16 2x -3 < 8

Solution :

162x -3 < 8

16 = 24 and 8 = 23

24(2x -3) < 23

Equating the powers, we get

4(2x - 3) < 3

2x - 3 < 3/4

2x < (3/4) + 3

2x < 15/4

x < 15/8

So, the solution is x < 15/8.

Problem 3 :

32x - 1 ≥ (1/243)

Solution :

32x - 1 ≥ (1/243)

243 = 35

32x - 1 ≥ (1/35)

32x - 1 ≥ 3-5

Equating the powers, we get

2x - 1 ≥ -5

2x ≥ -5 + 1

2x ≥ - 4

x ≥ -4/2

x ≥ -2

So, the solution is x ≥ -2.

Problem 4 :

2x + 2 > (1/32)

Solution :

2x + 2 > (1/32)

32 = 25

2x + 2 > (1/25)

2x + 2 > 2-5

Equating the powers, we get

x + 2 > -5

x > -5-2

x > -7

So, the solution is x > -7.

Problem 5 :

42x + 6 ≤ 642x - 4

Solution :

42x + 6 ≤ 642x - 4

64 = 43

42x + 6 ≤ 43(2x - 4)

Equating the powers, we get

2x + 6 ≤ 3(2x - 4)

2x + 6 ≤ 6x - 12

2x - 6x ≤ -12 - 6

-4x ≤ -18

Divide by -4, we get

≥ 18/4

x ≥ 9/2

Since we are dividing by the negative values, we have to flip the sign.

So, the solution is x ≥ 9/2.

Problem 6 :

25y - 3 ≤ (1/125)y+2

Solution :

25y - 3 ≤ (1/125)y+2

52(y - 3) ≤ (1/53)(y+2)

52(y - 3) ≤ 5-3(y+2)

Equating the powers, we get

2(y - 3) ≤ -3(y + 2)

2y - 6 ≤ -3y - 6

2y + 3y ≤ -6 + 6

5y ≤ 0

Dividing by 5, we get

y ≤ 0/5

y ≥ 0

So, the solution is y ≥ 0.

Problem 7 :

Solution :

-2(3t + 5) ≥ -5(t - 6)

Distributing -2 and -5, we get

-6t - 10 ≥ -5t + 30

-6t + 5t ≥ 30 + 10

-t ≥ 40

t ≤ -40

Problem 8 :

Solution :

-2(w + 2) < -3(4w)

-2w - 4 < -12w

-2w + 12w < 4

10w < 4

w < 4/10

w < 2/5

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More