SOLVING CUBIC EQUATION

Problem 12 :

The rational root of the equation 2x3 - x2 - 4x + 2 = 0 is 

(a) 1/2    (b) -1/2    (c)  2    (d)  -2

Solution :

2x3 - x2 - 4x + 2 = 0

x2 (2x - 1) - 2(2x - 1) = 0

(x2 - 2)(2x - 1) = 0

x2 - 2 = 0 and 2x - 1 = 0

x2 = 2 and x = 1/2

So, the roots are x = √2, -√2 and 1/2. Option a.

Problem 13 :

The satisfying value of x3 + x2 - 20x = 0 are

(a) (1, 4, -5)    (b) (2, -4,-5)   (c)  (0, -4, 5)    (d)  (0, 4, -5)

Solution :

x3 + x2 - 20x = 0

x(x2 + x - 20) = 0

x(x + 5)(x - 4) = 0

Equating each factor to 0, we get

x = 0, x + 5 = 0 and x - 4 = 0

x = 0, x = -5 and x = 4

So, the solution is (-5, 0, 4), option d.

Problem 14

Solve x3 - 6x2 + 5x + 12 = 0 given that the product of two roots is 12

(a) (1, 3, 4)    (b) (-1,3 ,4)   (c)  (1,6,2 )    (d)  (1, -6, -2)

Solution :

x3 - 6x2 + 5x + 12 = 0

solving-cubic-eq

x2 - 3x - 4 = 0

(x - 4) (x + 1) = 0

x = 4 and x = -1

So, the roots are 3, -1 and 4.

Problem 15 :

When √(2z + 1) + √(3z + 4) = 7 the value of z is given by

(a) 1    (b) 2   (c)  3    (d)  4

Solution :

(2z + 1) +(3z + 4) = 7Take square on both sides[(2z + 1) +(3z + 4)]2 = 722z+1+3z+4+2√(2z+1)(3z+4)=495z+5+2√(2z+1)(3z+4)=492√(2z+1)(3z+4)=49-5-5z2√(2z+1)(3z+4)=44-5z4(2z+1)(3z+4)=(44-5z)246z2+11z+4=1936-440z+25z225z2-24z2-440z-44z+1936-16=0z2-484z+1920=0(z-480)(z-4)=0z = 480 and z = 4

So, the answer is option d.

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More