Solve the quadratic equation by taking square roots :
Problem 1 :
x² + 8x + 16 = 9
Solution :
x² + 8x + 16 = 9
x² + 8x + 16 - 9 = 0
x² + 8x + 7 = 0
Write the trinomial on the left side of the above equation in terms of square of a binomial.
x² + 2(x)(4) + 7 = 0
x² + 2(x)(4) + 4² - 4² + 7 = 0
Using the identity (a + b)² = a² + 2ab + b²
(x + 4)² - 4² + 7 = 0
(x + 4)² - 16 + 7 = 0
(x + 4)² - 9 = 0
(x + 4)² = 9
Take square root on both sides.
√(x + 4)² = √9
x + 4 = ±3
x + 4 = 3 x + 4 = -3
x = -1 x = -7
Therefore, the solutions are
x = -1, x = -7
Problem 2 :
x² - 6x + 9 = 25
Solution :
x² - 6x + 9 = 25
x² - 6x + 9 - 25 = 0
x² - 6x - 16 = 0
Write the trinomial on the left side of the above equation in terms of square of a binomial.
x² - 2(x)(3) - 16 = 0
x² - 2(x)(3) + 3² - 3² - 16 = 0
Using the identity (a - b)² = a² - 2ab + b²
(x - 3)² - 3² - 16 = 0
(x - 3)² - 9 - 16 = 0
(x - 3)² - 25 = 0
(x - 3)² = 25
Take square root on both sides.
√ (x - 3)² = √25
x - 3 = ±5
x - 3 = 5 x - 3 = -5
x = 8 x = -2
Therefore, the solutions are
x = 8, x = -2
Problem 3 :
x² - 12x + 36 = 49
Solution :
x² - 12x + 36 = 49
x² - 12x + 36 - 49 = 0
x² - 12x - 13 = 0
Write the trinomial on the left side of the above equation in terms of square of a binomial.
x² - 2(x)(6) - 13 = 0
x² - 2(x)(6) + 6² - 6² - 13 = 0
Using the identity (a - b)² = a² - 2ab + b²
(x - 6)² - 6² - 13 = 0
(x - 6)² - 36 - 13 = 0
(x - 6)² - 49 = 0
(x - 6)² = 49
Take square root on both sides.
√ (x - 6)² = √49
x - 6 = ±7
x - 6 = 7 x - 6 = -7
x = 13 x = -1
Therefore, the solutions are
x = 13, x = -1
Problem 4 :
2x² - 12x + 18 = 32
Solution :
2x² - 12x + 18 = 32
2x² - 12x + 18 - 32 = 0
2x² - 12x - 14 = 0
2(x² - 6x - 7) = 0
x² - 6x - 7 = 0
Write the trinomial on the left side of the above equation in terms of square of a binomial.
x² - 2(x)(3) - 7 = 0
x² - 2(x)(3) + 3² - 3² - 7 = 0
Using the identity (a - b)² = a² - 2ab + b²
(x - 3)² - 3² - 7 = 0
(x - 3)² - 9 - 7 = 0
(x - 3)² - 16 = 0
(x - 3)² = 16
Take square root on both sides.
√(x - 3)² = √16
x - 3 = ±4
x - 3 = 4 x - 3 = -4
x = 7 x = -1
Therefore, the solutions are
x = 7, x = -1
Problem 5 :
4x² - 4x + 1 = 36
Solution :
4x² - 4x + 1 = 36
4x² - 4x + 1 - 36 = 0
4x² - 4x - 35 = 0
x² - x - 35/4 = 0
Write the trinomial on the left side of the above equation in terms of square of a binomial.
x² - 2(x)(1/2) - 35/4 = 0
x² - 2(x)(1/2) + (1/2)² - (1/2)² - 35/4 = 0
Using the identity (a - b)² = a² - 2ab + b²
(x - 1/2)² - (1/2)² - 35/4 = 0
(x - 1/2)² - 1/4 - 35/4 = 0
(x - 1/2)² - 36/4 = 0
(x - 1/2)² = 36/4
(x - 1/2)² = 9
Take square root on both sides.
√(x - 1/2)² = √9
x - 1/2 = ±3
x - 1/2 = 3 x - 1/2 = -3
x = 7/2 x = -5/2
Therefore, the solutions are
x = 7/2 x = -5/2
May 21, 24 08:51 PM
May 21, 24 08:51 AM
May 20, 24 10:45 PM