Squares and square roots are inverse to each other.
For example
Problem 1 :
Write the square of 3.
= 3 x 3
Since we find square of 3, we have to multiply the base two times.
Problem 2 :
Find the square root of 9.
= √9
= √3 x 3
= 3
Simplify each radical expression. Use absolute value symbols when needed.
Problem 1 :
√16x²
Solution :
√16x² = √ (4∙4∙x∙x)
√16x² = 4x
Problem 2 :
√0.25x6
Solution :
√0.25x6 = √ (0.5) (0.5).x3.x3
√0.25x6 = 0.5x3
Problem 3 :
√x8y18
Solution :
√x8y18 = √ (x4∙x4∙y9∙y9)
√x8y18 = x4∙x9
Problem 4:
√64b48
Solution :
√64b48 = √ (8∙8∙b24∙b24)
√64b48 = 8b24
Problem 5 :
-√64a³
Solution :
-√64a³ = (4∙4∙4∙a∙a∙a)
-√64a³ = - 4a
Problem 6 :
√27y6
Solution :
√27y6 = (3∙3∙3∙y²∙y²∙y²)
√27y6 = 3y²
Problem 7 :
√x8y12
Solution :
√x8y12 = (x²∙x²∙x²∙x²∙y³∙y³∙y³∙y³)
√x8y12 = x²y³
Problem 8 :
√x10
Solution :
√x10 = √x5 x5
= x5
Problem 9 :
√y²
Solution :
√y² = √(y∙y)
√y² = y
Problem 10 :
√b²
Solution :
√b² = √ (b∙b)
√b² = b
Problem 11 :
√49x²
Solution :
√49x² = √ (7∙7∙x∙x)
√49x² = 7x
Problem 12 :
√100y²
Solution :
√100y² = √ (10∙10∙y∙y)
√100y² = 10y
Problem 13 :
-√64a²
Solution :
-√64a² = -√ (8∙8∙a∙a)
-√64a² = - 8a
Problem 14 :
-√25x²
Solution :
-√25x² = -√(5∙5∙x∙x)
-√25x² = - 5x
Problem 15 :
√144x²y²
Solution :
√144x²y² = √(12∙12∙x∙x∙y∙y)
√144x²y² = 12xy
Problem 16 :
√196a²b²
Solution :
√196a²b² = √ (14∙14∙a∙a∙b∙b)
√196a²b² = 14ab
May 21, 24 08:51 PM
May 21, 24 08:51 AM
May 20, 24 10:45 PM