SIMPLIFYING VARIABLE EXPRESSIONS WITH SQUARE ROOTS

Squares and square roots are inverse to each other. 

For example

Problem 1 :

Write the square of 3.

= 3 x 3

Since we find square of 3, we have to multiply the base two times.

Problem 2 :

Find the square root of 9.

√9

√3 x 3 

= 3

Simplify each radical expression. Use absolute value symbols when needed.

Problem 1 :

√16x²

Solution :

√16x² = √ (4∙4∙x∙x)

√16x² = 4x

Problem 2 :

√0.25x6

Solution :

√0.25x6 = √ (0.5) (0.5).x3.x3

√0.25x6 = 0.5x3

Problem 3 :

√x8y18

Solution :

√x8y18 = √ (x4∙x4∙y9∙y9)

√x8y18 = x4∙x9

Problem 4:

√64b48

Solution :

√64b48 = √ (8∙8∙b24∙b24)

√64b48 = 8b24

Problem 5 :

-64a³

Solution :

-64a³ = (4∙4∙4∙a∙a∙a)

-64a³ = - 4a

Problem 6 :

27y6

Solution :

27y6 = (3∙3∙3∙y²∙y²∙y²)

27y6 = 3y²

Problem 7 :

x8y12

Solution :

x8y12 = (x²∙x²∙x²∙x²∙y³∙y³∙y³∙y³)

x8y12 = x²y³

Problem 8 :

√x10

Solution :

√x10 = √xx5

= x5

Problem 9 :

√y²

Solution :

√y² = √(y∙y)

√y² = y

Problem 10 :

√b²

Solution :

√b² = √ (b∙b)

√b² = b

Problem 11 :

√49x²

Solution :

√49x² = √ (7∙7∙x∙x)

√49x² = 7x

Problem 12 :

√100y²

Solution :

√100y² = √ (10∙10∙y∙y)

√100y² = 10y

Problem 13 :

-√64a²

Solution :

-√64a² = -√ (8∙8∙a∙a)

-√64a² = - 8a 

Problem 14 :

-√25x²

Solution :

-√25x² = -√(5∙5∙x∙x)

-√25x² = - 5x

Problem 15 :

√144x²y²

Solution :

√144x²y² = √(12∙12∙x∙x∙y∙y)

√144x²y² = 12xy

 

Problem 16 :

√196a²b²

Solution :

√196a²b² = √ (14∙14∙a∙a∙b∙b)

√196a²b² = 14ab

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More