Squares and square roots are inverse to each other.
For example
Problem 1 :
Write the square of 3.
= 3 x 3
Since we find square of 3, we have to multiply the base two times.
Problem 2 :
Find the square root of 9.
= √9
= √3 x 3
= 3
Simplify each radical expression. Use absolute value symbols when needed.
Problem 1 :
√16x²
Solution :
√16x² = √ (4 ∙ 4 ∙ x ∙ x)
√16x² = 4x
Problem 2 :
√0.25x6
Solution :
√0.25x6 = √ (0.5) (0.5) . x3 . x3
√0.25x6 = 0.5 x3
Problem 3 :
√x8y18
Solution :
√x8y18 = √ (x4 ∙ x4 ∙ y9 ∙ y9)
√x8y18 = x4 ∙ x9
= x4+9
= x13
Problem 4:
√64b48
Solution :
√64b48 = √ (8 ∙ 8 ∙ b24 ∙ b24)
√64b48 = 8 b24
Problem 5 :
-√64a³
Solution :
-√64a³ = (4 ∙ 4 ∙ 4 ∙ a ∙ a ∙ a)
-√64a³ = - 4a
Problem 6 :
√27y6
Solution :
√27y6 = (3 ∙ 3 ∙ 3 ∙ y² ∙ y² ∙ y²)
√27y6 = 3y²
Problem 7 :
√x8 y12
Solution :
√x8y12 = (x² ∙ x² ∙ x² ∙ x² ∙ y³ ∙ y³ ∙ y³∙ y ³)
√x8y12 = x²y³
Problem 8 :
√x10
Solution :
√x10 = √x5 x5
= x5
Problem 9 :
√y²
Solution :
√y² = √(y ∙ y)
√y² = y
Problem 10 :
√b²
Solution :
√b² = √ (b ∙ b)
√b² = b
Problem 11 :
√49 x²
Solution :
√49x² = √ (7 ∙ 7 ∙ x ∙ x)
√49x² = 7x
Problem 12 :
√100 y²
Solution :
√100 y² = √ (10 ∙ 10 ∙ y ∙ y)
√100y² = 10y
Problem 13 :
-√64 a²
Solution :
-√64 a² = -√ (8 ∙ 8 ∙ a ∙ a)
-√64 a² = - 8 a
Problem 14 :
-√25 x²
Solution :
-√25 x² = -√(5 ∙ 5 ∙ x ∙ x)
-√25 x² = - 5 x
Problem 15 :
√144 x² y²
Solution :
√144 x² y² = √(12 ∙ 12 ∙ x ∙ x ∙ y ∙ y)
√144 x² y² = 12 x y
Problem 16 :
√196a²b²
Solution :
√196a²b² = √ (14 ∙ 14 ∙ a ∙ a ∙ b ∙ b)
√196 a² b² = 14 a b
Problem 17 :
Which of the following is equal to x ?
a) x^12/7 - x^5/7 b) 12√ (x4)1/3 c) (√x2)2/3 d) x12/7 ∙ x7/12
Solution :
Option a :
Since we have negative sign in the middle, we cannot simplify more.
Option b :
= 12√ (x4)1/3
= 12√ (x4 ∙1/3)
= 12√ (x4/3)
= (x4/3)1/12
= x(4/3) ∙ (1/12)
= x(1/3) ∙ (1/3)
= x1/9
It is not equal to x.
Option c :
= (√x2)2/3
= ((x2)1/2)2/3
= x2/3
Option d :
= x12/7 ∙ x7/12
= x(12/7) ∙ (7/12)
= x
So, option d is equal to x.
Problem 18 :
Find the value of x in 3 + 2x = 641/2 + 271/3
Solution :
3 + 2x = 641/2 + 271/3
3 + 2x = (82)1/2 + (33)1/3
3 + 2x = 82 ∙ (1/2) + 33 ∙ (1/3)
3 + 2x = 8 + 3
2x = 8 + 3 - 3
2x = 8
2x = 23
x = 3
So, the value of x is 3.
Problem 19 :
If x = (√3 - √2) / (√3 + √2) and y = (√3 + √2) / (√3 - √2) find the value of x2 + y2 + xy
Solution :
x = (√3 - √2) / (√3 + √2)
x = [(√3 - √2) / (√3 + √2)] ∙ [(√3 - √2) / (√3 - √2)]
x = (√3 - √2)2 / (√3 + √2)(√3 - √2)
x = (√32 - 2√(3x2) + √22) / (√32 - √22)
x = (3 - 2√6 + 2) / (3 - 2)
x = (5 - 2√6) / 1
x = (5 - 2√6)
x2 = (5 - 2√6)2
= 52 - 2(5)(2√6) + (2√6)2
= 25 - 20√6 + 24
x2 = 49 - 20√6
y = (√3 - √2) / (√3 + √2)
y = [(√3 + √2) / (√3 - √2)] ∙ [(√3 + √2) / (√3 + √2)]
x = (√3 + √2)2 / (√3 + √2)(√3 - √2)
y = (√32 + 2√(3x2) + √22) / (√32 - √22)
y = (3 + 2√6 + 2) / (3 - 2)
y = (5 + 2√6) / 1
y = (5 + 2√6)
y2 = (5 + 2√6)2
= 52 + 2(5)(2√6) + (2√6)2
= 25 + 20√6 + 24
y2 = 49 + 20√6
xy = (√3 - √2) / (√3 + √2) (√3 + √2) / (√3 - √2)
xy = 1
x2 + y2 + xy = 49 - 20√6 + 49 + 20√6 + 1
= 49 + 49 + 1
= 99
So, the value of x2 + y2 + xy is 99.
Problem 20 :
Solve for x in the following questions.
i) √(32.4/x) = 2 ii) √86.49 + √(5 + x2) = 12.3
Solution :
i) √(32.4/x) = 2
To remove the square root sign, squaring on both sides.
32.4/x = 22
32.4 / x = 4
x = 32.4/4
x = 8.1
So, the missing value is 8.1
ii) √86.49 + √(5 + x2) = 12.3
9.3 + √(5 + x2) = 12.3
√(5 + x2) = 12.3 - 9.3
√(5 + x2) = 3
(5 + x2) = 32
(5 + x2) = 9
x2 = 9 - 5
x2 = 4
x = -2 and 2.
May 21, 24 08:51 PM
May 21, 24 08:51 AM
May 20, 24 10:45 PM