SIMPLIFYING VARIABLE EXPRESSIONS WITH SQUARE ROOTS

Squares and square roots are inverse to each other. 

For example

Problem 1 :

Write the square of 3.

= 3 x 3

Since we find square of 3, we have to multiply the base two times.

Problem 2 :

Find the square root of 9.

√9

√3 x 3 

= 3

Simplify each radical expression. Use absolute value symbols when needed.

Problem 1 :

√16x²

Solution :

√16x² = √ (4 ∙ 4 ∙ x ∙ x)

√16x² = 4x

Problem 2 :

√0.25x6

Solution :

√0.25x6 = √ (0.5) (0.5) . x3 . x3

√0.25x6 = 0.5 x3

Problem 3 :

√x8y18

Solution :

√x8y18 = √ (x∙ x∙ y∙ y9)

√x8y18 = x∙ x9

x4+9

= x13

Problem 4:

√64b48

Solution :

√64b48 = √ (8 ∙ 8 ∙ b24 ∙ b24)

√64b48 = 8 b24

Problem 5 :

-64a³

Solution :

-64a³ = (4 ∙ 4 ∙ 4 ∙ a ∙ a ∙ a)

-64a³ = - 4a

Problem 6 :

27y6

Solution :

27y6 = (3 ∙ 3 ∙ 3 ∙ y² ∙ y² ∙ y²)

27y6 = 3y²

Problem 7 :

xy12

Solution :

√x8y12 = (x² ∙ x² ∙ x² ∙ x² ∙ y³ ∙ y³ ∙ y³∙ y ³)

√x8y12 = x²y³

Problem 8 :

√x10

Solution :

√x10 = √x5  x5

= x5

Problem 9 :

√y²

Solution :

√y² = √(y ∙ y)

√y² = y

Problem 10 :

√b²

Solution :

√b² = √ (b ∙ b)

√b² = b

Problem 11 :

√49 x²

Solution :

√49x² = √ (7 ∙ 7 ∙ x ∙ x)

√49x² = 7x

Problem 12 :

√100 y²

Solution :

√100 y² = √ (10 ∙ 10 ∙ y ∙ y)

√100y² = 10y

Problem 13 :

-√64 a²

Solution :

-√64 a² = -√ (8 ∙ 8 ∙ a ∙ a)

-√64 a² = - 8 a 

Problem 14 :

-√25 x²

Solution :

-√25 x² = -√(5 ∙ 5 ∙ x ∙ x)

-√25 x² = - 5 x

Problem 15 :

√144 x² y²

Solution :

√144 x² y² = √(12 ∙ 12 ∙ x ∙ x ∙ y ∙ y)

√144 x² y² = 12 x y

 

Problem 16 :

√196a²b²

Solution :

√196a²b² = √ (14 ∙ 14 ∙ a ∙ a ∙ b ∙ b)

√196 a² b² = 14 a b

Problem 17 :

Which of the following is equal to x ?

a) x^12/7 - x^5/7      b)  12√ (x4)1/3         c)  (x2)2/3     d) x12/7 ∙ x7/12

Solution :

Option a :

Since we have negative sign in the middle, we cannot simplify more.

Option b :

= 12√ (x4)1/3 

= 12√ (x1/3)

= 12√ (x4/3)

= (x4/3)1/12

= x(4/3) ∙ (1/12)

= x(1/3) ∙ (1/3)

= x1/9

It is not equal to x.

Option c :

= (√x2)2/3   

= ((x2)1/2)2/3

= x2/3

Option d :

= x12/7 ∙ x7/12

x(12/7) (7/12)

= x

So, option d is equal to x.

Problem 18 :

Find the value of x in 3 + 2x = 641/2 + 271/3

Solution :

3 + 2x = 641/2 + 271/3

3 + 2x = (82)1/2 + (33)1/3

3 + 2x = 82 ∙ (1/2) + 33 ∙ (1/3)

3 + 2x = 8 + 3

2x = 8 + 3 - 3

2x = 8

2x = 23

x = 3

So, the value of x is 3.

Problem 19 :

If x = (√3 - √2) / (√3 + √2) and y = (√3 + √2) / (√3 - √2) find the value of x2 + y2 + xy

Solution :

x = (√3 - √2) / (√3 + √2)

x = [(√3 - √2) / (√3 + √2)] ∙ [(√3 - √2) / (√3 - √2)]

x = (√3 - √2)2 / (√3 + √2)(√3 - √2)

x = (√32 - 2√(3x2) + √22) / (√32 - √22)

x = (3 - 2√6 + 2) / (3 - 2)

x = (5 - 2√6) / 1

x = (5 - 2√6)

x2 = (5 - 2√6)2

= 52 - 2(5)(2√6) + (2√6)2

= 25 - 20√6 + 24

x2  = 49 - 20√6

y = (√3 - √2) / (√3 + √2)

y = [(√3 + √2) / (√3 - √2)] ∙ [(√3 + √2) / (√3 + √2)]

x = (√3 + √2)2 / (√3 + √2)(√3 - √2)

y = (√32 + 2√(3x2) + √22) / (√32 - √22)

y = (3 + 2√6 + 2) / (3 - 2)

y = (5 + 2√6) / 1

y = (5 + 2√6)

y2  (5 + 2√6)2

= 52 + 2(5)(2√6) + (2√6)2

= 25 + 20√6 + 24

y2  = 49 + 20√6

xy = (√3 - √2) / (√3 + √2) (√3 + √2) / (√3 - √2)

xy = 1

x2 + y2 + xy = 49 - 20√6 + 49 + 20√6 + 1

= 49 + 49 + 1

= 99

So, the value of x2 + y2 + xy is 99.

Problem 20 :

Solve for x in the following questions.

i)  √(32.4/x) = 2      ii)  √86.49 + √(5 + x2) = 12.3

Solution :

i)  √(32.4/x) = 2

To remove the square root sign, squaring on both sides.

32.4/x = 22

32.4 / x = 4

x = 32.4/4

x = 8.1

So, the missing value is 8.1

ii)  √86.49 + √(5 + x2) = 12.3

9.3 + √(5 + x2) = 12.3

√(5 + x2) = 12.3 - 9.3

√(5 + x2) = 3

(5 + x2) = 32

(5 + x2) = 9

x2 = 9 - 5

x2 = 4

x = -2 and 2.

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More