SIMPLIFYING FACTORIAL EXPRESSIONS

What is factorial ?

Factorial of a whole number n is defined as the product of that number with every whole number less than or equal to n till 1. 

For all positive integers, n! is defined as

n! = n (n−1) (n−2)⋯(2)(1)

4! = 4 x 3 x 2 x 1

4! = 24

How to simplify factorial expression ?

To simplify factorial expression, first we have to choose the larger value and write it in descending order as product of terms.

Simplify without using a calculator.

Problem 1 :

6! / 5!

Solution :

6! / 5! = (6 ∙ 5 ∙ 4 ∙ 3 ∙ 2 ∙ 1) / (5 ∙ 4 ∙ 3 ∙ 2 ∙ 1)

= 6

Alternatively :

6! = (6 ∙ 5!) / 5!

= 6

Simplify without using a calculator.

Problem 2 :

6! / 4!

Solution :

6! / 4! = (6 ∙ 5 ∙ 4 ∙ 3 ∙ 2 ∙ 1) / (4 ∙ 3 ∙ 2 ∙ 1)

= 6 ∙ 5

= 30

Alternatively :

6! = (6 ∙ 5 ∙ 4!) / 4!

= 6 ∙ 5

= 30

Problem 3 :

6! / 7!

Solution :

6! / 7! = (6 ∙ 5 ∙ 4 ∙ 3 ∙ 2 ∙ 1) / (7 ∙ 6 ∙ 5 ∙ 4 ∙ 3 ∙ 2 ∙ 1)

= 1/7

Alternatively :

6! / 7! = 6! / (7 ∙ 6!)

= 1/7

Problem 4 :

4! / 6!

Solution :

4! / 6! = (4 ∙ 3 ∙ 2 ∙ 1) / (6 ∙ 5 ∙ 4 ∙ 3 ∙ 2 ∙ 1)!

= 1/30

Problem 5 :

100! / 99!

Solution :

100! / 99! = 100 ∙ 99! / 99!

= 100

Problem 6 :

7! / (5! × 2!)

Solution :

7! / 5! × 2! = 7 ∙ 6 ∙ 5! / 5! ∙ (2 ∙ 1!)

= 42/2

= 21

Problem 7 :

Simplify:

n! / (n - 1)!

Solution :

= n (n - 1)! / (n - 1)!

= n

Problem 8 :

(n + 2)! / n!

Solution :

= [(n + 2) (n + 1) n!] / n!

= (n + 2) (n + 1)

Problem 9 :

(n + 1)! / (n - 1)!

Solution :

= (n + 1) n (n - 1)! / (n - 1)!

= n(n + 1)

Simplify the following expressions.

Problem 10 :

5! / 6!

Solution :

= (5 ∙ 4 ∙ 3 ∙ 2 ∙ 1) / (6 ∙ 5 ∙ 4 ∙ 3 ∙ 2 ∙ 1)

= 1/6

Problem 11 :

7! / 5!

Solution:

= (7 ∙ 6 ∙ 5 ∙ 4 ∙ 3 ∙ 2 ∙ 1) / (5 ∙ 4 ∙ 3 ∙ 2 ∙ 1)

= 7 ∙ 6

= 42

Problem 12 :

(3!)² / 9

Solution :

= (3 ∙ 2 ∙ 1!)² / 9

= 6² / 9

= 36 / 9

= 4

Problem 13 :

(3! ∙ 4!) / 5!

Solution :

= (3 ∙ 2 ∙ 1) ∙ 4! / 5 ∙ 4!

= 3 ∙ 2 ∙ 1 / 5

= 6/5

Problem 14 :

9! /(5! ∙ 3!)

Solution :

= [9 ∙ 8 ∙ 7 ∙ 6 ∙ 5!] / [5! ∙ (3 ∙ 2 ∙ 1)]

= (9 ∙ 8 ∙ 7 ∙ 6) / (3 ∙ 2 ∙ 1)

= 3024 / 6

= 504

Problem 15 :

(4 - 1)! / 4!

Solution :

= 3! / 4!

= 3! / (4 ∙ 3!)

=1/4

Problem 16 :

(2 ∙ 3)! / 3!

Solution :

= 6! / 3!

= (6 ∙ 5 ∙ 4 ∙ 3!)) / 3!

= 6 ∙ 5 ∙ 4

= 120

Problem 17 :

88! / 90!

Solution :

= 88! / (90 ∙ 89 ∙ 88!)

= 1 / (90 ∙ 89)

= 1/8010 

Problem 18 :

(77! ∙ 2!)/ 78!

Solution :

= 77! ∙ (2 ∙ 1) / (78 ∙ 77!)

= 2/78

= 1/39

Problem 19 :

38! ∙ 3! / 39!

Solution :

= 38! ∙ (3 ∙ 2 ∙ 1) / (39 ∙ 38!)

= 3 ∙ 2 ∙ 1 / 39

= 6/39

= 2/13

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More