If two
secants intersect in the exterior of a circle, then the product of the measures
of one secant segment and its external secant segments is equal to the product
of the measures of the other secant and its external secant segment.
AC ∙ AB = AE ∙ AD
Find x.
Problem 1:
Solution :
Using theorem,
JH ∙ JG = JK ∙ JL
8 ∙ (8 + x) = 6 ∙ (6 + 10)
64 + 8x = 96
8x = 32
x = 32/8
x = 4
Problem 2 :
Solution :
Using theorem,
RT ∙ RU = RS ∙ RV
x ∙ (x + 9) = 4 ∙ (4 + 5)
x² + 9x = 36
x² + 9x - 36 = 0
(x + 12) (x - 3) = 0
x = -12 or x = 3
We can use only positive value for x. because lengths cannot be negative.
So, we have
x = 3
Problem 3 :
Solution :
Using theorem,
TW ∙ TX = TY ∙ TZ
7 ∙ (7 + 12) = 6 ∙ (6 + x)
133 = 36 + 6x
6x = 97
x = 97/6
x ≈ 16
For each figure, determine the value of the variable and the indicated lengths by applying the Secant-Secant product theorem.
Problem 4 :
Solution :
DC ∙ DB = DE ∙ DF
5 ∙ (5 + 4.5) = 5 ∙ (5 + x)
47.5 = 25 + 5x
5x = 47.5 - 25
5x = 22.5
x = 4.5
BD = BC + CD = 4.5 + 5 BD = 9.5 |
FD = FE + ED = x + 5 = 4.5 + 5 FD = 9.5 |
Problem 5 :
Solution :
Using theorem,
GI ∙ GK = GH ∙ GJ
6 ∙ (6 + y) = 5 ∙ (5 + 16)
36 + 6y = 105
6y = 105 - 36
6y = 69
y = 11.5
GJ = GH + HJ = 5 + 16 GJ = 21 |
GK = GI + IK = 6 + y = 6 + 11.5 GK = 17.5 |
Problem 6 :
Solution :
Using theorem,
SR ∙ SQ = ST ∙ SU
14 ∙ (14 + 4) = 9 ∙ (9 + z)
252 = 81 + 9z
9z = 252 - 81
9z = 171
z = 19
SQ = SR + RQ = 14 + 4 SQ = 18 |
SU = ST + TU = 9 + z = 9 + 19 SU = 28 |
Problem 7:
Solution :
Using theorem,
CD ∙ CE = CG ∙ CF
12 ∙ (12 + n) = 9 ∙ (9 + 18)
144 + 12n = 243
12n = 243 - 144
12n = 99
n = 8.25
CE = CD + DE = 12 + n = 12 + 8.25 CE = 20.25 |
CF = CG + GF = 9 + 18 CF = 27 |
May 21, 24 08:51 PM
May 21, 24 08:51 AM
May 20, 24 10:45 PM