ROTATION OF 2D SHAPES WITH CENTER OF ROTATION

If we rotate the 2d shape about origin, we will follow the rules given below about the angle that we are rotating.

Step 1 :

If center of rotation is something else than origin, we have to draw the horizontal and vertical lines in order to consider we have origin at the specified point.

Step 2 :

From the center of rotation, we have to move horizontally and vertically to get each vertices of the 2d shape.

Step 3 :

Moving right, x-coordinate = positive

Moving left, x-coordinate = negative

Moving up, y-coordinate = positive

Moving down, y-coordinate = negative

Rotating the shape means moving them around a fixed point. There are two directions

i) Clockwise 

ii) Counter clockwise (or) Anti clockwise

The shape itself stays exactly the same, but its position in the space will change.

90° clockwise 

90° counter clockwise

180° 

270° clockwise

270° counter clockwise

(x, y) ==> (y, -x)

(x, y) ==> (-y, x)

(x, y) ==> (-x, -y)

(x, y) ==> (-y, x)

(x, y) ==> (y, -x)

Note :

90 degree clockwise rotation and 270 degree counter clockwise direction both are same.

90 degree counter clockwise direction and 270 degree clockwise direction both are same.

Rotate each of the shapes below as instructed, using P as the centre of rotation

Problem 1 :

Rotate 90° clockwise about P.

center-of-rotationq1.png

Solution :

center-of-rotationq1s.png

Point A :

From P, move 2 units right and 1 unit up. So, (2, 1)

Point B :

From P, move 4 units right and 1 unit up. So, (4, 1)

Point C :

From P, move 4 units right and 2 unit up. So, (4, 2)

Point D :

From P, move 2 units right and 2 unit up. So, (2, 2)

Rule for 90° clockwise rotation

(x, y) ==> (y, -x)

A (2, 1)

B (4, 1)

C (4, 2)

D (2, 2)

A' (1, -2)

B' (1, -4)

C' (2, -4)

D' (2, -2)

center-of-rotationq1sp1.png

Problem 2 :

Rotate 90° counter clockwise about P.

center-of-rotationq2.png

Solution :

center-of-rotationq2s.png

Point A :

From P, move 1 unit right and 1 unit up. So, A(1, 1)

Point B :

From P, move 3 units right and 1 unit up. So, B(3, 1)

Point C :

From P, move 1 unit right and 3 units up. So, C(1, 3)

Rule for 90° counter clockwise rotation

(x, y) ==> (-y, x)

A(1, 1)

B(3, 1)

C(1, 3)

A'(-1, 1)

B'(-1, 3)

C'(-3, 1)

center-of-rotationq2sp1.png

Problem 3 :

Rotate 180° about P.

center-of-rotationq3.png

Solution :

center-of-rotationq3s.png

Point A :

From P, move 1 unit left and 1 unit up. So, A(-1, 1)

Point B :

From P, no horizontal move and move up 1 unit. So, B (0, 1)

Point C :

From P, no horizontal move and move up 2 units. So, C (0, 2)

Point D :

From P, 2 units right and 2 units up. So, D (2, 2)

Point E :

From P, 2 units right and 3 units up. So, E (2, 3)

Point F :

From P, 1 unit left and 3 units up. So, F (-1, 3)

Rule for 180° rotation

(x, y) ==> (-x, -y)

A(-1, 1)

B (0, 1)

C (0, 2)

D (2, 2)

E (2, 3)

F (-1, 3)

A'(1, -1)

B' (0, -1)

C' (0, -2)

D' (-2, -2)

E' (-2, -3)

F' (1, -3)

center-of-rotationq3sp1.png

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More