PROBLEMS USING ALGEBRAIC IDENTITIES IN SAT

Problem 1 :

Which of the following is equivalent to 

(1/m)2 - 2 (1/m) (1/n) + (1/n)2

(a) (1/√m - 1/√n)4     (b) (1/m  - 1/n)2

(c)  1/(m-n)2     (d)  2/(m2 - mn +n2)

Solution :

= (1/m)2 - 2 (1/m) (1/n) + (1/n)2

The given expansion is in the form of

(a - b)2 = a2 - 2ab + b2

Here a = 1/m and b = 1/n

So, (1/m - 1/n)2

Problem 2 :

(3x + 2y)2

If the expression above can be written as

ax2 + bxy + cy2

 where a, b and c are constants, what is the value a + b +c ?

Solution :

(3x + 2y)

Here a = 3x and b = 2y

= (3x)2 + 2(3y)(2y) + (2y)2

= 32x2 + 2(3y)(2y) + (22y)2

= 9x2 + 12xy + 4y2

By comparing the corresponding terms, we get

9x2 + 12xy + 4y2 ax2 + bxy + cy2

a = 9, b = 12 and c = 4

a + b + c = 9 + 12 + 4

= 25

Problem 3 :

x2 + kx + 9 = (x + a)2

In the equation above k and a are positive constants. If the equation is true for all values of x, what is the value of k ?

Solution :

Using the algebraic identity

(a + b)2 = a2 + 2ab + b2

(x + a)2 = x2 + 2ax + a ------(1)

By applying (1) in the given question, we get

x2 + kx + 9 = x2 + 2ax + a2

Comparing the corresponding terms, we get

2a = k and a2 = 9

a2 = 32, then a = 3

2(3) = k

k = 6

Problem 4 :

2x (x - y) (x + y)

Which of the following is equivalent to the expression above ?

(a) 4x3 - 2xy2     (b)  2x3 + 2xy2

(c)  2x3 - 2xy2     (d)  2x3 - 4xy + 2xy2

Solution :

2x (x - y) (x + y)

In the given question (x - y) (x + y) looks like (a - b) (a + b)

(a - b) (a + b) = a2 - b2

2x (x - y) (x + y) = 2x (x - y) (x + y)

= 2x (x2 - y2)

By distributing 2x, we get

= 2x3 - 2xy2

Problem 5 :

If (x + 3) (x - 3) = 91, what is the value of x2?

Solution :

(x + 3) (x - 3) = 91

Using algebraic identity (a + b)(a - b) = a2 - b2

x2 - 32 = 91

x2 - 9 = 91

Add 9 on both sides, we get

x2 = 91 + 9

x2 = 100

So, the value of x2 is 100.

Problem 6 :

The expression

(x + 1)/(x + 2) - (x - 2)/(x - 1)

is equivalent to which of the following ?

(a)  -5/(x + 2) (x - 1)    (b)  1/(x + 2) (x - 1)

(c)  3/(x + 2) (x - 1)    (b)  (2x2+3)/(x + 2) (x - 1)

Solution :

To combine the rational expression, let us take the least common multiple.

= [(x + 1)⋅(x - 1)/(x + 2)(x -1)]  - [(x - 2)⋅(x+2)/(x - 1)⋅(x+2)]

Using the algebraic identity,

(a + b) (a- b) = a2 - b2

we get

(x + 1)⋅(x - 1) = x2 - 12

(x - 2)⋅(x+2) = x2 - 22

= ((x2 - 1) - (x2 - 4)) / (x - 1)⋅(x + 2)

= (-1 + 4) / (x - 1)(x + 2)

= 3/(x - 1)(x + 2)

Problem 7 :

Which of the following is equivalent to

(m + n - 1) (m + n +1) ?

 (a) m2 + 2mn + n2 - 1      (b) m2 - 2mn + n2 - 1

(c) m2 - n2 - 1  (d) m2 - 2mn + n2 - 1

Solution :

(m + n - 1) (m + n +1)

Let a = m + n

= (a - 1) (a + 1)

= a2 - 1 -----(1)

Applying the value of a in (1), we get

= (m + n)2 - 1

= m2 + n2 - 1

Problem 8 :

(a + b)2 - (a - b)2

The expression above is equivalent 

(a)  2ab     (b) 4ab     (c)  4ab + b2      (d)  2a2 + 2b2

Solution :

(a + b)2 - (a - b)2

= a2 + 2ab + b2 + a2 - 2ab + b2

= 2a2 + 2b2

Problem 9 :

(x - c)2 = x + 3

If c = 3, what is the solution set of the equation above ?

(a)  {1}    (b)  {6}     (c)  {1, 6}    (d)  {-3, 1, 6}

Solution :

(x - c)2 = x + 3

By applying the value of c = 3 in the equation, we get

(x - 3)2 = x + 3

x2 - 2(x) (3) + 32 = x + 3

Subtracting x and 3, we get

x2 - 6x + 9 - x - 3 = 0

x2 - 7x + 6 = 0

(x - 1) (x - 6) = 0

x = 1 and x = 6

So, the value of x is {1, 6}.

Problem 10 :

The following is equivalent form of 

(1.5x - 2.4)2 - (5.2x2 - 6.4) ?

Solution :

Using the algebraic identity,

(a - b)2 = a2 - 2ab + b2

(1.5x - 2.4)2 = (1.5x)2 - 2(1.5x) (2.4) + (2.4)2

= 2.25x2 - 7.2x + 5.76

(1.5x - 2.4)- (5.2x2 - 6.4) 

= 2.25x2 - 7.2x + 5.76 - 5.2x2 + 6.4

= 2.25x2 - 5.2x- 7.2x + 5.76 + 6.4

= -2.95x2 - 7.2x + 12.16

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More