Problem 1 :
If |z1| = 1, |z2| = 2, |z3| = 3 and |9z1z2 + 4z1z3 + z2z3| = 12, then the value of |z1 + z2 + z3| is
(1) 1 (2) 2 (3) 3 (4) 4
Solution :
Given, |z1| = 1, |z2| = 2, |z3| = 3
|9z1z2 + 4z1z3 + z2z3| = 12
So, option (2) is correct.
Problem 2 :
If z is a complex number such that z ϵ ℂ \ ℝ and z + 1/z ϵ ℝ, then |z| is
(1) 0 (2) 1 (3) 2 (4) 3
Solution :
Given, z is a complex number.
So, option (2) is correct.
Problem 3 :
z1, z2 and z3 are complex numbers such that z1 + z2 + z3 = 0 and |z1| = |z2| = |z3| = 1 then z12 + z22 + z32 is
(1) 3 (2) 2 (3) 1 (4) 0
Solution :
Given, z1, z2 and z3 are complex numbers.
z1 + z2 + z3 = 0 and |z1| = |z2| = |z3| = 1
To find : z12 + z22 + z32
z12 + z22 + z32 = z12+ z22 + z32 - 2(z1z2 + z2z3 + z3z1)
z12 + z22 + z32 = (z1 + z2 + z3)2 - 2(z1z2 + z2z3 + z3z1)
z12 + z22 + z32 = - 2(z1z2 + z2z3 + z3z1)
z12 + z22 + z32 = -2z1z2z3(1/z1 + 1/z2 + 1/z3) --- (1)
|z1| = 1
|z1|2 = 1
z1z̄1 = 1
1/z1 = z̄1 similarly 1/z2 = z̄2, 1/z3 = z̄3
1/z1 = z̄1, 1/z2 = z̄2 and 1/z3 = z̄3 substitute in (1) becomes,
So, option (4) is correct.
Problem 4 :
If (z - 1)/(z + 1) is purely imaginary, then |z| is
(1) 1/2 (2) 1 (3) 2 (4) 3
Solution :
Problem 5 :
If z = x + iy is a complex number such that |z + 2| = |z - 2|, then the locus of z is
(1) real axis (2) imaginary axis (3) ellipse (4) circle
Solution :
|z + 2| = |z - 2|
|x + iy + 2| = |x + iy - 2|
|x + 2 + iy|2 = |x - 2 + iy|2
(x + 2)2 + y2 = (x - 2)2 + y2
x2 + y2 + 4x = x2 + 4 - 4x
x2 + y2 + 4x - x2 - 4 + 4x = 0
8x = 0
x = 0
So, option (2) is correct.
May 21, 24 08:51 PM
May 21, 24 08:51 AM
May 20, 24 10:45 PM