Problem 1 :
If z is a non zero complex number, such that 2iz2 = z̄ then |z| is
(1) 1/2 (2) 1 (3) 2 (4) 3
Solution :
Given, z is a non zero complex number.
2iz2 = z̄
|2iz2| = |z̄|
|2| |i| |z|2 = |z|
(2) (1) |z|2 = |z|
|z| = 1/2
So, option (1) is correct.
Problem 2 :
If |z – 2 + i| ≤ 2, then the greatest value of |z| is
(1)√3 - 2 (2) √3 + 2 (3) √5 - 2 (4) √5 + 2
Solution :
Given, |z – 2 + i| ≤ 2
||z1| - |z2|| ≤ |z1 - z2| ≤ 2
||z| - |2 - i|| ≤ |z – 2 + i| ≤ 2
|z| - |√5| ≤ 2
|z| - √5 ≤ 2
|z| ≤ 2 + √5
Greatest value of |z| is 2 + √5.
So, option (4) is correct.
Problem 3 :
If |z – 3/z| = 2, then the least value of |z| is
(1)1 (2) 2 (3) 3 (4) 5
Solution :
t = |-1| and t = 1
t = |3| and t = 3
So, the least value of |z| is 1.
Hence, option (1) is correct.
Problem 4 :
If |z| = 1, then the value of (1 + z)/(1 + z̄) is
(1) z (2) z̄ (3) 1/z (4) 1
Solution :
Given, |z| = 1
z̄ = 1/z
Hence, option (1) is correct.
Problem 5 :
The solution of the equation |z| - z = 1 + 2i is
|
|
Solution :
Given, |z| - z = 1 + 2i
z = x + iy
|x + iy| - (x + iy) = 1 + 2i
√(x2 + y2) - x - iy = 1 + 2i
Equating real and imaginary part.
√(x2 + y2) - x = 1
-iy = 2
y = -2
√(x2 + (-2)2) - x = 1
√(x2 + 4) - x = 1
√(x2 + 4) = 1 + x
Square on both sides.
x2 + 4 = (1 + x)2
x2 + 4 = 1 + x2 + 2x
x2 + 4 - 1 - x2 - 2x = 0
3 - 2x = 0
-2x = -3
x = 3/2
z = x + iy
z = 3/2 - 2i
Hence, option (1) is correct.
May 21, 24 08:51 PM
May 21, 24 08:51 AM
May 20, 24 10:45 PM