PROBLEMS ON MODULUS AND PRINCIPAL ARGUMENT OF COMPLEX NUMBER

The length of the line segment, that is OP, is called the modulus of the complex number. The angle from the positive axis to the line segment is called the argument of the complex number, z.

Example :

Find the modulus and argument of a complex number

1 + i

Solution :

modulus-and-argument-of-com-num

Let z = 1 + i

Finding Modulus :

Sum of squares of real part and imaginary part.

Modulus :

OP = |z|

√12 + 12

OP = √2

Argument :

θ = tan-1(y/x)

θ = tan-1(1/1)

θ = tan-1(1)

θ = π/4

In the argant plane, angle lies in the 

1st quadrant

2nd quadrant

3rd quadrant

4th quadrant

θ = α

θ = π - α

θ = -π + α

θ = - α

Problem 1 :

The principal argument of 3/(-1 + i) is

(1) -5𝜋6
(3) -3𝜋4
(2) -2𝜋3
(4) -𝜋2

Solution :

Given, 3-1 + i= 3-1 + i × -1 - i-1 - i= 3(-1 - i)1 + i - i - i2= 3(-1 - i)1 - (-1)= 3(-1 - i)1 + 1 = 3(-1 - i)2𝛼 = tan-1yx= tan-1-1-1=tan-1(1)𝛼 = 𝜋4It is lies in III quadrant.𝜃 = -𝜋 + 𝛼= -𝜋 + 𝜋4= -4𝜋 + 𝜋4= -3𝜋4

So, option (3) is correct.

Problem 2 :

The principal argument of (sin 40º + i cos 40º)5 is

(1)  -110º    (2)   -70º   (3)   70º   (4)   110º

Solution :

Given, the principal argument of (sin 40º + i cos 40º)5

= (cos 50º + i sin 50º)5

= (cos 250º + i sin 250º)

250º lies in III quadrant.

To find the principal argument the rotation must be in a clockwise direction which coincides with 250º.

θ = -110º

So, option (1) is correct.

Problem 3 :

If (1 + i) (1 + 2i) (1 + 3i) … (1 + ni) = x + iy, then 2 ⋅ 5 ⋅ 10 … (1 + n2) is

(1)1   (2)   i   (3)   x2 + y2    (4)   1 + n2

Solution :

(1 + i) (1 + 2i) (1 + 3i) … (1 + ni) = x + iy

Taking modulus on both sides.

|(1 + i) (1 + 2i) (1 + 3i) … (1 + ni)| = |(x2 + y2)|

12 + 12 · 12 + 22 · 12 + 32 ·... 12 + n2 = x2 + y2 1 + 1 · 1 + 4 · 1 + 9 ·... 1 + n2 = x2 + y22 · 5 · 10 ·... 1 + n2 = x2 + y2Squaring on both sides.2 · 5 · 10 .... 1 + n2 = x2 + y2

So, option (3) is correct.

Problem 4 :

If ω ≠ 1 is a cubic root of unity (1 + ω)7 = A + Bω, then (A, B) equals

(1)   (1, 0)   (2)   (-1, 1)  (3)   (0,1)   (4)   (1, 1)

Solution :

Given, (1 + ω)7 = A + Bω

1 + ω + ω2 = 0

1 + ω = -ω2

(1 + ω)7 = (-ω2)7

= -ω14

= -ω12 × ω2

= -(ω3)× ω2

= -ω2

= 1 + ω

= A + ωB

(A, B) = (1, 1) 

So, option (4) is correct.

Problem 5 :

The principal argument of the complex number 1 + i324i1 - i3 is
(1) 2𝜋3
(3) 5𝜋6
(2) 𝜋6
(4) 𝜋2

Solution :

Let z = 1 + i324i1 - i3= (1)2 + i32 + 2(1)i34i - 4i23= 1 - 3 + 2i34i +4 3= -2 + 2i34i +4 3= 2-1 + i3 4i + 3z = -1 + i3 2i + 3= -1 + i3 2i + 3 × i - 3i - 3= -1 + i3i - 32i + 3 i - 3= -i + 3 + i23 - i322i2 - i3 + i3 - 32= -i + 3 - 3 - 3i2(-1 - 3)= -i - 3i-8= 4i8= i2z = x + iyz = 0 + 12iRe (z) = 0; Im (z) = 12𝜃 = tan-1yx𝜃 = tan-1Im (z)Re (z)= tan-1120= tan-1 12𝜃 = 𝜋2

So, option (4) is correct.

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More