Problem 1 :
The number of sides of a regular polygon where each exterior angle has a measure of 45º is ……
a) 8 b) 10 c) 4 d) 6
Solution :
Sum of the exterior angles of a regular polygon = 360 º
Exterior angle has a measure = 45º
Number of sides of a regular polygon = 360/45
= 8
Number of sides of a regular polygon is 8 sides.
Hence, option a. is correct.
Problem 2 :
a) 60º b) 140º c) 150º d) 108º
Solution :
A regular pentagon has all its five sides equal and all five angles are also equal.
S = [(n – 2) × 180º]/n
= [(5 – 2) × 180º]/5
= (3 × 180º)/5
= 540º/5
= 108º
Hence, option d. is correct.
Problem 3 :
If two adjacent angles of a parallelogram are in the ratio 2 : 3, then the measure of angles are
(a) 72º, 108º (b) 36º, 54º (c) 80º, 120º (d) 96º, 144º
Solution :
Let the two adjacent angles of a parallelogram are in the ratio be 2x and 3x.
So, 2x + 3x = 180º
[Interior angles on the same side of transversal].
5x = 180º
Dividing 5 on both sides.
5x/5 = 180º/5
x = 36º
Therefore the measure of angles are,
2 × 36º = 72º
2 × 36º = 108º
Hence, option a. is correct.
Problem 4 :
If PQRS is a parallelogram, then ∠P - ∠R is equal to
a) 60º b) 90º c) 80º d) 0º
Solution :
Opposite angles are equal to each other in parallelogram.
Given, ∠P - ∠R
∠P = ∠R
∠R - ∠R = 0º
Hence, option d. is correct.
Problem 5 :
The sum of adjacent angles of a parallelogram is
a) 180º b) 120º c) 360º d) 90º
Solution :
The sum of adjacent angles of a parallelogram is 180º. Because both angles are co – interior angles.
Hence, option a. is correct.
Problem 6 :
The number of sides of a regular polygon whose each interior angle is of 135º is ……
a) 6 b) 7 c) 8 d) 9
Solution :
Sum of colinear interior and exterior angle is 180º.
Interior angle + exterior angle = 180º
135º + exterior angle = 180º
Exterior angle = 180º - 135º
Exterior angle = 45º
Number of sides of a regular polygon = 360º/Exterior angle
= 360º/45º
= 8
So, the number of sides of a regular polygon is 8.
Hence, option c. is correct.
May 21, 24 08:51 PM
May 21, 24 08:51 AM
May 20, 24 10:45 PM