Each trapezoid is isosceles. Find the measure of each angle.
Problem 1 :
Solution :
Each pair of base angles in an isosceles trapezoid must be congruent.
So, we have
m ∠P = m ∠Q = 77º
Because ∠S and ∠P are consecutive interior angles formed by parallel lines, they are supplementary.
So, we have
m ∠P + m ∠S = 180º
Substitute m ∠P = 77º.
77º + m ∠S = 180º
Subtract 77º from both sides.
m ∠S = 103º
Each pair of base angles in an isosceles trapezoid must be congruent.
So, we have
m ∠S = m∠R = 103º
Hence,
∠1 = 77º
∠2 = 103º
∠3 = 103º
Problem 2 :
Solution :
∠S + ∠R = 180
111 + ∠1 = 180
∠1 = 180 - 111
∠1 = 69
∠1 = ∠2 = 69
∠3 = 111
Problem 3 :
Solution :
∠1 = ∠P = ∠Q = 49
∠S + ∠P = 180
∠2 + ∠1 = 180
∠2 + 49 = 180
∠2 = 180 - 49
∠2 = 131
∠3 = 131
Problem 4 :
Solution :
∠X = 105, ∠Y = 105
∠W = 180 - 105
∠W = 75
∠Z = 75
Problem 5 :
Solution :
∠P = 65, ∠S = 65
∠Q + ∠P = 180
∠Q = 180 - 65
∠Q = 115
∠R = 115
Problem 6 :
Solution :
∠A = 60, ∠D = 60
∠B + ∠A = 180
∠B = 180 - 60
∠B = 120
∠C = 120
May 21, 24 08:51 PM
May 21, 24 08:51 AM
May 20, 24 10:45 PM