OPERATIONS WITH POLYNOMIALS PRACTICE SAT

Problem 1 :

(3x + 2y)2

If the expression above can be written as ax2 + bxy + cy2, where a, b and c are constants, what is the value of a + b + c ?

Solution :

Expanding (3x + 2y)2 using the algebraic identity (a+b)2, we get 

= (3x)2 + 2(3x)(2y) + (2y)2

= 9x2 + 12xy + 4y2

a = 9, b = 12 and c = 4

a + b + c = 9 + 12 + 4

a + b + c = 25

Problem 2 :

Which of the following expression is not equivalent to

ab (c + d) ?

(a)  abd + abc     (b)  ab(d + c)     (c)  ab (c + d)   (d) abc + bd

Solution :

ab (c + d)

Using distributive property, we get

= abc + abd

So, option c is not equivalent to the given.

Problem 3 :

x2 + kx + 9 = (x + a)2

In the equation above, k and a are positive constants. If the equation is true for all values of x, what us the value of k ?

Solution :

x2 + kx + 9 = (x + a)2

x2 + kx + 9 = x2 + 2ax + a2

2a = k and a2 = 9

a = 3, -3

If a = 3, then k = 2(3) ==> 6

If a = -3, then k = 2(-3) ==> -6

Problem 4 :

For all x ≠ 3, the expression above is equivalent to 

kx(x-3)2

where k is positive constant. What is the value of k ?

Solution :

3x+ 10x(x-3)2 - 3x(x-3)3x+10 -3(x-3)x(x-3)23x+10 -3x+9x(x-3)219x(x-3)2

Problem 5 :

If  a = x2 - 5x + 2 and b = 3x3 + 4x2 - 6, what is 3a - b in terms of x ?

(a) 4x2 - 15x + 12      (b)  -3x3 - 4x2 - 15x + 12

(c) -3x3 - x2 - 15x      (d) -3x3 + 7x2 - 15x + 12

Solution :

a = x2 - 5x + 2

3a = 3x2 - 15x + 6

3a - b = 3x2 - 15x + 6 - (3x3 + 4x2 - 6)

= 3x2 - 15x + 6 - 3x3 - 4x2 + 6

= - 3x3 - x2 - 15x + 12

Problem 6 :

Based on the equation above, which of the following is possible value of (x - 2) ?

(a)  √3     (b)  -2 + √3     (c)  2 - √3   (d) 3

Solution :

9x - 2 = 3(x -2)9 = 3(x-2)2

9 = 3(x2 - 2x(2) + 22)

9 = 3(x2 - 4x + 2)

9 = 3x2 - 12x + 6

3x2 - 12x + 6 - 9 = 0

3x2 - 12x - 3 = 0

x = -b±b2-4ac2aa=3, b=-12 and c=3x = -(-12)±(-12)2-4(3)(3)2(3)x = 12±144-366x = 12±1086x = 12±636x = 62±36x = 2±3

Problem 7 :

If a4 - b2 = 30 and a2 + b = -5, what is the value of a2 - b ?

(a)  -6   (b)  -2    (c) 3     (d)  6

Solution :

a4 - b2 = 30

(a2)2b2 = 30

(a2 + b)(a2 - b) = 30

-5(a2 - b) = 30

(a2 - b) = 30/(-5)

(a2 - b) = -6

Problem 8 :

If c = ab/d and d ≠ 0, then 1/ab = 

(a)  c + d   (b)  cd     (c) 1/cd    (d) c/d

Solution :

c = ab/d

c/d = ab

Taking reciprocal on both sides,

d/c = 1/ab

Problem 9 :

2x (x - y) (x + y) 

Which of the following is equivalent to the expression above ?

(a) 4x3 - 2xy2    (b)  2x3 + 2xy2

(c)  2x3 - 2xy     (d)  2x3 - 4xy + 2xy2

Solution :

= 2x (x - y) (x + y) 

= 2x(x2 - y2)

= 2x3 - 2xy2

Problem 10 :

If y8 = m and y9 = 2/3, what is the value of y in terms of m ?

(a)  2m/3   (b)  2/3m   (c) 3m/2   (D) 3/2m

Solution :

y8 = m -----(1)

y9 = 2/3 -----(2)

(2)/(1)  ==>  y9 / y8 = (2/3) / m

y = 2/3m

Problem 11 :

b(2a + 3) (2 + 5a)

What is the value of the coefficient of the ab term when the expression above is explained and the like terms are combined ?

Solution :

= b(2a + 3) (2 + 5a)

= b(4a + 10a2 + 6 + 15a)

= b(10a2 + 19a + 6)

Problem 12 :

If (x + 3) (x - 3) = 91, what is the value of x2 ?

Solution :

(x + 3) (x - 3) = 91

x2 - 32 = 91

x2 - 9 = 91

Add 9 on both sides.

x2 = 91 + 9

x2 = 100

x = √100

x = ±10

Problem 13 :

a(3 - a) + 2(a + 5)

Which of the following is equivalent to the expression above ?

(a) -a2 + 5a + 5     (b)  -a2 + 5a + 10

(c)  4a + 5        (d)  4a + 10

Solution :

= a(3 - a) + 2(a + 5)

= 3a - a2 + 2a + 10

= -a2 + 2a + 3a + 10

= -a2 + 5a + 10

So, option a is correct.

Problem 14 :

If y > 0 and 

(a)  -3/2   (b) -5/2   (c) 3/2   (d) 5/2

Solution :

Using properties of exponents, we get

yby12 = 1y2yb = y12y2yb = y12 - 2yb = y-32

The value of b is -3/2.

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More