MULTIPLYING POLYNOMIALS

To multiply two or more monomials, we have to follow the rule given below.

(i) Multiply the signs

(ii) Multiply the coefficients

(iii) Multiply the variables.

Multiplying Monomial by a Polynomial

Find the product.

Problem 1 :

-8x4(-11x – 6)

Solution :

= -8x4(-11x – 6)

 = (-8x4)(-11x) + (-8x4)(-6)

= 88x5 + 48x4

Problem 2 :

3x2(10x7 + 6x2)

Solution :

= 3x2(10x7 + 6x2)

= 3x2(10x7) + 3x2(6x2)

= 30x9 + 18x4

Multiplying Binomials

Problem 3 :

(2x + 3)(x – 9)

Solution :

Given, (2x + 3)(x – 9)

Distribute.

= 2x(x – 9) + 3(x – 9)

Distribute again.

= 2x(x) + 2x(-9) + 3(x) – 3(9)

Multiply.

= 2x2 – 18x + 3x – 27

Combine like terms.

= 2x2 – 15x – 27

Problem 4 :

(x + 4y)(x + 4y)

Solution :

= (x + 4y)(x + 4y)

Using algebraic identity.

(a + b)2 = a2 + b2 + 2ab

Given a = x, b = 4y

(x + 4y)2 = (x)2 + (4y)2 + 2(x)(4y)

= x2 + 16y2 + 8xy

Problem 5 :

(9 + x)(4x – 12)

Solution :

Given, (9 + x)(4x – 12)

Distribute.

= 9(4x – 12) + x(4x – 12)

Distribute again.

= 9(4x) + 9(-12) + x(4x) + x(-12)

Multiply.

= 36x – 108 + 4x2 – 12x

Combine like terms.

= 4x2 + 24x – 108

Multiplying Binomial by Trinomial

Problem 6 :

(7y - 3)(49y+ 21y + 9)

Solution :

We can do this problems in two ways,

(i) Doing distribution

(ii) Algebraic identities

Method 1 :

= (7y - 3)(49y+ 21y + 9)

Distribute.

= 7y(49y+ 21y + 9) – 3(49y+ 21y + 9)

Distribute again.

= 7y(49y2) + 7y(21y) + 7y(9) + (-3)(49y2) + (-3)(21y) + (-3)(9)

Multiply.

= 343y3 + 147y2 + 63y – 147y2 – 63y – 27

Combine like terms.

= 343y3 - 27

Method 2 :

(7y - 3)(49y+ 21y + 9)

= (7y - 3)((7y)+ 7y(3) + 32)

It exactly matches with the algebraic identity, 

(a - b) (a2 + ab + b2) = a3 - b3

= (7y)3 - 33

= 343y3 - 27

Multiplying Trinomial by Trinomial

Problem 7 :

(3x+ 3x + 1) (x+ 2x + 3)

Solution :

Given, (3x+ 3x + 1) (x+ 2x + 3)

Distribute.

3x2(x+ 2x + 3) + 3x(x+ 2x + 3) + 1(x+ 2x + 3)

Distribute again.

= (3x2)(x2) + (3x2)(2x) + (3x2)(3) + 3x(x2) + 3x(2x) + 3x(3) + 1(x2) + 1(2x) + 1 (3)

Multiply.

= 3x4 + 6x3 + 9x2 + 3x3 + 6x2 + 9x + x2 + 2x + 3

Combine like terms.

= 3x4 + 9x3 + 16x2 + 11x + 3

Problem 8 :

3x(3x - 1)(2x + 9)

Solution :

3x(3x – 1)(2x + 9)

Distribute.

= (3x)[(3x)(2x + 9) + (-1)(2x + 9)]

Distribute again.

= (3x)[(3x)(2x) + 9(3x) + (-1)(2x) + (-1)(9)]

Multiply.

= (3x)[6x2 + 27x – 2x – 9]

Combine like terms.

= (3x)[6x2 + 25x – 9]

= 18x3 + 75x2 – 27x

Using Algebraic Identities

Problem 9 :

(a - 10)(a + 10)

Solution :

= (a - 10)(a + 10)

Using algebraic identity.

(a + b)(a – b) = a2 – b2

Given, a = a, b = 10

(a - 10)(a + 10) = (a)2 – (10)2

= a2 - 100

Problem 10 :

(7p + 10)(7p – 10)

Solution :

= (7p + 10)(7p – 10)

Using algebraic identity.

(a + b)(a – b) = a2 – b2

Given a = 7p, b = 10

(7p + 10)(7p – 10) = (7p)2 – (10)2

= 49p2 - 100

Problem 11 :

(7m – 5w)(7m + 5w)

Solution :

= (7m – 5w)(7m + 5w)

Using algebraic identity.

(a + b)(a – b) = a2 – b2

Given a = 7m, b = 5w

(7m – 5w)(7m + 5w) = (7m)2 – (5w)2

= 49m2 – 25w2

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More