Problem 1 :
4x (2x + 6)
Solution :
= 4x (2x + 6)
Distribute 4x,
= 4x (2x) + 4x (6)
Combine the like terms,
= 8x² + 24x
Problem 2 :
9y² (5y - 3)
Solution :
= 9y² (5y - 3)
Distribute 9y²,
= 9y² (5y) + 9y² (-3)
Combine the like terms,
= 45y³ - 27y²
Problem 3:
y(y + 5)
Solution :
= y(y + 5)
Distribute y,
= y(y) + y(5)
Combine the like terms,
= y² + 5y
Problem 4 :
-2n (7 – 5n2)
Solution :
= -2n (7 – 5n2)
Distribute -2n,
= -2n(7) – 2n(-5n²)
Combine the like terms,
= -14n + 10n³
Problem 5 :
-2v7 (15v6 + 46v4)
Solution :
= -2v7 (15v6 + 46v4)
Distribute -2v7,
= -2v7 (15v6) - 2v7 (46v4)
Combine the like terms,
= -30v7+6 - 92v7+4
= -30v13 – 92v11
Problem 6 :
1/9 a² (81a5 - 72)
Solution :
= 1/9 a² (81a5 - 72)
Distribute 1/9 a²,
= 1/9 a² (81 a5) – 1/9 a² (72)
Combine the like terms,
= 9a7 – 8a2
Problem 7 :
-4m6 (-7m3 + 5m6)
Solution :
= -4m6 (-7m3 + 5m6)
Distribute -4m6,
= -4m6(-7m³) – 4m6(5m6)
Combine the like terms,
= 28m6+3 – 20m6+6
= 28m9 – 20m12
Problem 8 :
r5 (-3r – 8r4)
Solution :
= r5 (-3r – 8r4)
Distribute r5,
= r5(-3r) + r5(-8r4)
Combine the like terms,
= -3r5+1 – 8r5+4
= -3r6 – 8r9
Problem 9 :
13z4 (6z7 + 4z5)
Solution :
= 13z4 (6z7 + 4z5)
Distribute 13z4
= 13z4 (6z7) + 13z4 (4z5)
Combine the like terms,
= 78z4+7 + 52z4+5
= 78z11 + 52z9
Problem 10 :
-28d3 (-5/28 d2 - 2/7 d)
Solution :
= -28d3 (-5/28 d2 - 2/7 d)
Distribute -28d3
= -28d3 (-5/28 d2) – 28d3(-2/7 d)
Combine the like terms,
= 5d3+2 + 4d3+1
= 5d5 + 4d4
Problem 11 :
The volume of the locker (in cubic inches) is represented by (4x3 + 7x2).
a. Write a polynomial that represents the height of the locker.
b. Find the height of the locker (in feet) when the side length of the base is 15 inches.
Solution :
Volume of the locker = (4x3 + 7x2)
Volume of locker = length ⋅ width ⋅ height
(4x3 + 7x2) = x ⋅x ⋅ height
(4x3 + 7x2) = x2 ⋅ height
Height = (4x3 + 7x2)/x2
= 4x + 7
So, height of the polynomial is 4x + 7.
Problem 12 :
Explain how to simplify the expression 4d(2d − 7) + (5d + 4)(4d − 1).
Solution :
= 4d(2d − 7) + (5d + 4)(4d − 1)
= 4d(2d) - 4d(7) + 5d(4d) + 5d(-1) + 4(4d) + 4(-1)
= 8d2 - 28d + 20d2 - 5d + 16d - 4
= 8d2 + 20d2 - 28d - 5d + 16d - 4
= 28d2 - 33d + 16d - 4
= 28d2 - 17d - 4
Problem 13 :
Find the values of a, b, and c that make the equation true
(2x − 1)(3x + 4) = ax2 + bx + c
Solution :
(2x − 1)(3x + 4) = ax2 + bx + c
2x(3x) + 2x(4) - 1(3x) - 1(4) = ax2 + bx + c
6x2 + 8x - 3x - 4 = ax2 + bx + c
6x2 + 5x - 4 = ax2 + bx + c
Comapring the corresponding terms, we get
a = 6, b = 5 and c = -4
Problem 14 :
5(3x + c) = 15x + 40
Find the value of c.
Solution :
5(3x + c) = 15x + 40
Using distributive property,
5(3x) + 5(c) = 15x + 40
15x + 5c = 15 x + 40
Equating the corresponding terms, we get
5c = 40
c = 40/5
c = 8
Problem 15 :
Work out the values of c and d
2(x + 7) + cx + d = 5x + 1
Solution :
2(x + 7) + cx + d = 5x + 1
2x + 2(7) + cx + d = 5x + 1
2x + 14 + cx + d = 5x + 1
2x + cx + 14 + d = 5x + 1
x(2 + c) + (14 + d) = 5x + 1
Equating the coefficients of x and constants, we get
2 + c = 5 and 14 + d = 1
c = 5 - 2 and d = 1 - 14
c = 3 and d = -13
Problem 16 :
Work out the values of a and b.
(x − 2)2 + x + a(x + b) ≡ x2 + 1
Solution :
(x − 2)2 + x + a(x + b) ≡ x2 + 1
x2 - 2x(2) + 22 + x + ax + ab ≡ x2 + 1
x2 - 4x + 4 + x + ax + ab ≡ x2 + 1
x2 - 3x + ax + 4 + ab ≡ x2 + 1
x2 + (- 3 + a) x + (4 + ab) ≡ x2 + 1
Equating the coefficients of x and constant, we get
-3 + a = 0 a = 3 |
4 + ab = 1 Applying the value of a, we get 4 + 3b = 1 3b = 1 - 4 3b = -3 b = -1 |
So, the values of a and b are 3 and -1 respectively.
May 21, 24 08:51 PM
May 21, 24 08:51 AM
May 20, 24 10:45 PM