MULTIPLYING MONOMIAL AND BINOMIAL

Problem 1 :

4x (2x + 6)

Solution :

= 4x (2x + 6)

Distribute 4x,

= 4x (2x) + 4x (6)

Combine the like terms,

= 8x² + 24x

Problem 2 :

9y² (5y - 3)

Solution :

= 9y² (5y - 3)

Distribute 9y²,

= 9y² (5y) + 9y² (-3)

Combine the like terms,

= 45y³ - 27y²

 

Problem 3:

y(y + 5)

Solution :

= y(y + 5)

Distribute y,

= y(y) + y(5)

Combine the like terms,

= y² + 5y

Problem 4 :

-2n (7 – 5n2)

Solution :

= -2n (7 – 5n2)

Distribute -2n,

= -2n(7) – 2n(-5n²)

Combine the like terms,

= -14n + 10n³

Problem 5 :

-2v7 (15v6 + 46v4)

Solution :

= -2v7 (15v6 + 46v4)

Distribute -2v7,

= -2v7 (15v6) - 2v7 (46v4)

Combine the like terms,

= -30v7+6 - 92v7+4

= -30v13 – 92v11

Problem 6 :

1/9 a² (81a5 - 72)

Solution :

= 1/9 a² (81a5 - 72)

Distribute 1/9 a²,

= 1/9 a² (81 a5) – 1/9 a² (72)

Combine the like terms,

= 9a7 – 8a2

Problem 7 :

-4m6 (-7m3 + 5m6)

Solution :

= -4m6 (-7m3 + 5m6)

Distribute -4m6,

= -4m6(-7m³) – 4m6(5m6)

Combine the like terms,

= 28m6+3 – 20m6+6

= 28m9 – 20m12

Problem 8 :

r5 (-3r – 8r4)

Solution :

= r5 (-3r – 8r4)

Distribute r5,

= r5(-3r) + r5(-8r4)

Combine the like terms,

= -3r5+1 – 8r5+4

= -3r6 – 8r9

Problem 9 :

13z4 (6z7 + 4z5)

Solution :

= 13z4 (6z7 + 4z5)

Distribute 13z4

= 13z4 (6z7) + 13z4 (4z5)

Combine the like terms,

= 78z4+7 + 52z4+5

= 78z11 + 52z9

Problem 10 :

-28d3 (-5/28 d2 - 2/7 d)

Solution : 

= -28d3 (-5/28 d2 - 2/7 d)

Distribute -28d3

= -28d3 (-5/28 d2) – 28d3(-2/7 d)

Combine the like terms,

= 5d3+2 + 4d3+1

= 5d5 + 4d4

Problem 11 :

The volume of the locker (in cubic inches) is represented by (4x3 + 7x2).

a. Write a polynomial that represents the height of the locker.

b. Find the height of the locker (in feet) when the side length of the base is 15 inches.

multiplying-and-dividing-polynomials-q1

Solution : 

Volume of the locker = (4x3 + 7x2)

Volume of locker = length ⋅ width ⋅ height

(4x3 + 7x2) = x ⋅x ⋅ height

(4x3 + 7x2) = x2 ⋅ height

Height = (4x3 + 7x2)/x2

= 4x + 7

So, height of the polynomial is 4x + 7.

Problem 12 :

Explain how to simplify the expression 4d(2d − 7) + (5d + 4)(4d − 1).

Solution : 

= 4d(2d − 7) + (5d + 4)(4d − 1)

= 4d(2d) - 4d(7) + 5d(4d) + 5d(-1) + 4(4d) + 4(-1)

= 8d2 - 28d + 20d2 - 5d + 16d - 4

= 8d2 + 20d2 - 28d - 5d + 16d - 4

= 28d2 - 33d + 16d - 4

= 28d2 - 17d - 4

Problem 13 :

Find the values of a, b, and c that make the equation true

(2x − 1)(3x + 4) = ax2 + bx + c

Solution : 

(2x − 1)(3x + 4) = ax2 + bx + c

2x(3x) + 2x(4) - 1(3x) - 1(4) = ax2 + bx + c

6x2 + 8x - 3x - 4 = ax2 + bx + c

6x2 + 5x - 4 = ax2 + bx + c

Comapring the corresponding terms, we get

a = 6, b = 5 and c = -4

Problem 14 :

5(3x + c) = 15x + 40

Find the value of c.

Solution : 

5(3x + c) = 15x + 40

Using distributive property, 

5(3x) + 5(c) = 15x + 40

15x + 5c = 15 x + 40

Equating the corresponding terms, we get

5c = 40

c = 40/5

c = 8

Problem 15 :

Work out the values of c and d

2(x + 7) + cx + d = 5x + 1

Solution : 

2(x + 7) + cx + d = 5x + 1

2x + 2(7) + cx + d = 5x + 1

2x + 14 + cx + d = 5x + 1

2x + cx  + 14 + d = 5x + 1

x(2 + c) + (14 + d) = 5x + 1

Equating the coefficients of x and constants, we get

2 + c = 5 and 14 + d = 1

c = 5 - 2 and d = 1 - 14

c = 3 and d = -13

Problem 16 :

Work out the values of a and b.

(x − 2)2 + x + a(x + b) ≡ x2 + 1

Solution :

(x − 2)2 + x + a(x + b) ≡ x2 + 1

x2 - 2x(2) + 22 + x + ax + ab  ≡ x2 + 1

x2 - 4x + 4 + x + ax + ab  ≡ x2 + 1

x2 - 3x + ax + 4 + ab  ≡ x2 + 1

x2 + (- 3 + a) x + (4 + ab)  ≡ x2 + 1

Equating the coefficients of x and constant, we get

-3 + a = 0

a = 3

4 + ab = 1

Applying the value of a, we get

4 + 3b = 1

3b = 1 - 4

3b = -3

b = -1

So, the values of a and b are 3 and -1 respectively.

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More