Here we can see how we multiply binomials.
If two binomials are the same, we can use the algebraic identities instead of multiplying the binomials directly.
Problem 1 :
(x + 5) (x + 5)
Solution :
= (x + 5) (x + 5)
= x(x) + x(5) + 5(x) + 5(5)
= x² + 5x + 5x + 25
= x² + 10x + 25
Expand the following and collect
like terms:
Problem 2 :
(x + 9) (x + 9)
Solution :
= (x + 9) (x + 9)
= x(x) + x(9) + 9(x) + 9(9)
= x² + 9x + 9x + 81
Combine the like terms.
= x² + 18x + 81
Problem 3 :
(y - 2) (y - 2)
Solution :
= (y - 2) (y - 2)
= y(y) + y(-2) - 2(y) - 2(-2)
= y² - 2y – 2y + 4
Combine the like terms.
= y² - 4y + 4
Problem 4 :
(m - 3) (m - 3)
Solution :
= (m - 3) (m - 3)
= m(m) + m(-3) - 3(m) - 3(-3)
= m² - 3m – 3m + 9
Combine the like terms.
= m² - 6m + 9
Problem 5 :
(2m + 5) (2m + 5)
Solution :
= (2m + 5) (2m + 5)
= 2m(2m) + 2m(5) + 5(2m) + 5(5)
= 4m² + 10m + 10m + 25
Combine the like terms.
= 4m² + 20m + 25
Problem 6 :
(t + 10) (t + 10)
Solution :
= (t + 10) (t + 10)
= t(t) + t(10) + 10(t) + 10(10)
= t² + 10t + 10t + 100
Combine the like terms.
= t² + 20t + 100
Problem 7 :
(y + 8)²
Solution :
(y + 8)² = (y + 8) (y + 8)
= y(y) + y(8) + 8(y) + 8(8)
= y² + 8y + 8y + 64
Combine the like terms.
= y² + 16y + 64
Instead of multiplying the binomials directly, we can use algebraic identity (a + b)2 = a2 + 2ab + b2
(y + 8)² = y2 + 2y(8) + 82
= y2 + 16y + 64
Problem 8 :
(t + 6)²
Solution :
(t + 6)² = (t + 6) (t + 6)
= t(t) + t(6) + 6(t) + 6(6)
= t² + 6t + 6t + 36
Combine the like terms.
= t² + 12t + 36
May 21, 24 08:51 PM
May 21, 24 08:51 AM
May 20, 24 10:45 PM