MULTIPLYING BINOMIALS USING DISTRIBUTIVE PROPERTY

Here we can see how we multiply binomials.

If two binomials are the same, we can use the algebraic identities instead of multiplying the binomials directly.

Problem 1 :

(x + 5) (x + 5)

Solution :

= (x + 5) (x + 5)

= x(x) + x(5) + 5(x) + 5(5)

= x² + 5x + 5x + 25

= x² + 10x + 25

Expand the following and collect like terms:

Problem 2 :

(x + 9) (x + 9)

Solution :

= (x + 9) (x + 9)

= x(x) + x(9) + 9(x) + 9(9)

= x² + 9x + 9x + 81

Combine the like terms.

= x² + 18x + 81 

Problem 3 :

(y - 2) (y - 2)

Solution :

= (y - 2) (y - 2)

= y(y) + y(-2) - 2(y) - 2(-2)

= y² - 2y – 2y + 4

Combine the like terms.

= y² - 4y + 4

Problem 4 :

(m - 3) (m - 3)

Solution :

= (m - 3) (m - 3)

= m(m) + m(-3) - 3(m) - 3(-3)

= m² - 3m – 3m + 9

Combine the like terms.

= m² - 6m + 9

Problem 5 :

(2m + 5) (2m + 5)

Solution :

= (2m + 5) (2m + 5)

= 2m(2m) + 2m(5) + 5(2m) + 5(5)

= 4m² + 10m + 10m + 25

Combine the like terms.

= 4m² + 20m + 25

Problem 6 :

(t + 10) (t + 10)

Solution :

= (t + 10) (t + 10)

= t(t) + t(10) + 10(t) + 10(10)

= t² + 10t + 10t + 100

Combine the like terms.

= t² + 20t + 100

Problem 7 :

 (y + 8)²

Solution :

(y + 8)² = (y + 8) (y + 8)

 = y(y) + y(8) + 8(y) + 8(8)

= y² + 8y + 8y + 64

Combine the like terms.

= y² + 16y + 64

Instead of multiplying the binomials directly, we can use algebraic identity (a + b)2 = a2 + 2ab + b2

(y + 8)² = y2 + 2y(8) + 82

y2 + 16y + 64

Problem 8 :

(t + 6)²

Solution :

(t + 6)² = (t + 6) (t + 6)

= t(t) + t(6) + 6(t) + 6(6)

= t² + 6t + 6t + 36

Combine the like terms.

= t² + 12t + 36

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More