MAKING A SIGN CHART TO SOLVE INEQUALITY PROBLEMS

To solve inequality problems, we will follow the steps given below.

Step 1 :

Solve the inequality and find the value or values of x.

Step 2 :

Put the values in the number line and decompose into intervals.

Step 3 :

Select the values from the interval and apply in the factored form of the given inequality.

Step 4 :

Draw the sign chart in the given interval.

Step 4 :

The values from which interval is going to satisfy the given inequality can be considered as solution.

Step 5 :

In case we receive more than one intervals as solutions, use the Union to express the solution.

Make a sign chart to solve the inequalities. Give answers in interval solution.

Problem 1 :

x2 + 9x - 22 < 0

Solution :

Let f(x) = x2 + 9x - 22

Solving this quadratic function, we get

x2 + 9x - 22 = 0

Solving for x, we get

x2 + 11x - 2x - 22 = 0

x(x + 11) - 2(x + 11) = 0

(x - 2)(x + 11) = 0

x = 2 and x = -11

sign-chart-inequality-q1

(-∞, -11), (-11, 2) and (2, ∞)

(-∞, -11)

x = -12

f(x) = (x - 2)(x + 11) < 0

f(-12) = -14(-1)

= 14 < 0

False

(-11, 2)

x = 0

f(x) = (x - 2)(x + 11) < 0

f(0) = -2(11) < 0

= -22 < 0

True

(2, ∞)

x = 3

f(x) = (x - 2)(x + 11) < 0

f(3) = 1(14) < 0

= 14 < 0 

False

Sign chart :

sign-chart-inequality-q1p1.png

In the interval (-11, 2), the given function f(x) is true. Then the solution is (-11, 2).

Problem 2 :

x2 - 16  0

Solution :

Let f(x) = x2 - 16

Solving this quadratic function, we get

x2 - 16 = 0

Solving for x, we get

(x + 4)(x - 4) = 0

x = -4 and x = 4

sign-chart-inequality-q2

(-∞, -4]

x = -5

f(x) = (x + 4)(x - 4)

f(-5) = -1(-9)

= 9 > 0

[-4, 4]

x = 0

f(x) = (x + 4)(x - 4)

f(0) = 4(-4)

= -16 < 0

[4, ∞)

x = 5

f(x) = (x + 4)(x - 4)

f(5) = 9(1)

= 9 > 0

Sign Chart :

sign-chart-inequality-q2p1

So, the solution is (-∞, -4] U [4, ∞).

Problem 3 :

x(x - 3)2 (x + 2)  0

Solution :

Let f(x) = x(x - 3)2 (x + 2)

Solving the function f(x), we get

x(x - 3)2 (x + 2) = 0

Equating each factor to 0, we get

x = 0, x = 3 and x = -2

Sign Chart :

sign-chart-inequality-q3

(-∞, -2], [-2, 0], [0, 3] and [3, ∞)

(-∞, -2]

x = -3

f(x) = x(x - 3)2 (x + 2)  0

f(-3) = -3(36)(-1)  0

= 108  0

False

[-2, 0]

x = -1

f(x) = x(x - 3)2 (x + 2)  0

f(-1) = -1(16)(1)  0

= -16  0

True

[0, 3]

x = 1

f(x) = x(x - 3)2 (x + 2)  0

f(1) = 1(4)(3)  0

= 12  0

False

[3, ∞)

x = 4

f(x) = x(x - 3)2 (x + 2)  0

f(4) = 4(1)(6)  0

= 24  0

False

sign-chart-inequality-q3p1.png

So, the solution is [-2, 0] and 3.

Problem 4 :

(x - 1) / (x + 4)  0

Solution :

Let f(x) = (x - 1) / (x + 4) 

Solving the function f(x), we get

(x - 1) / (x + 4)  = 0

Equating the numerator and denominator to 0, we get 

x = -4 and x = 1

sign-chart-inequality-q4.png

(-∞, -4], [-4, 1] and [1, ∞)

(-∞, -4]

x = -5

f(x) = (x - 1) / (x + 4)  0

f(-4) = -5/(-1)  0

= 5  0

False

[-4, 1]

x = 0

f(x) = (x - 1) / (x + 4)  0

f(0) = -1/4  0

True

[1, ∞)

x = 2

f(x) = (x - 1) / (x + 4)  0

f(2) = (2 - 1) / (2 + 4)  0

f(2) = 1/6  0

False

sign-chart-inequality-q4p1

So, the solution is [-4, 1].

Problem 5 :

x2 / (x - 1)  0

Solution :

Let f(x) = x2 / (x - 1)

Solving the function f(x), we get

x2 / (x - 1) = 0

Equating the numerator and denominator to 0, we get 

x = 0 and x = 1

Sign Chart :

sign-chart-inequality-q5

(-∞, 0] [0, 1] and [1, ∞)

(-∞, 0]

x = -2

f(x) = x2 / (x - 1)  0

f(-2) = 4/(-3)  0

= False

[0, 1]

x = 0.5

f(x) = x2 / (x - 1)  0

f(0.5) = 0.25/(-0.5)  0

= False

[1, ∞)

x = 2

f(x) = x2 / (x - 1)  0

f(2) = 4/1  0

= True

sign-chart-inequality-q5p1.png

So, the required solution is 0 U [1, ∞).

Problem 6 :

(x2 -4x + 3) / (x2 + 4x - 21) > 0

Solution :

Let f(x) = (x2 -4x + 3) / (x2 + 4x - 21)

Solving the function f(x), we get

(x2 -4x + 3) / (x2 + 4x - 21)

Factoring the numerator,

x2 -4x + 3 = 0

(x - 1) (x - 3) = 0

x = 1 and x = 3

Factoring the denominator,

x2 + 4x - 21 = 0

(x - 3) (x + 7) = 0

x = 3 and x = -7

f(x) = (x - 1) (x - 3) / (x - 3) (x + 7) > 0

f(x) = (x - 1) / (x + 7) > 0

Sign chart :

sign-chart-inequality-q6.png

(- ∞, -7) (-7, 1) (1, 3) and (3,  ∞).

(- ∞, -7)

x = -8

f(x) = (x - 1) / (x + 7) > 0

f(-8) = -9/(-1) > 0

= 9 > 0

= True

(-7, 1)

x = 0

f(x) = (x - 1) / (x + 7) > 0

f(0) = -1/7 > 0

= False

(1, 3)

x = 2

f(x) = (x - 1) / (x + 7) > 0

f(2) = 1/9 > 0

= True

(3, ∞)

x = 4

f(x) = (x - 1) / (x + 7) > 0

f(4) = 3/11 > 0

= True

So, the solution is (- ∞, -7), (1, 3) U (3, ∞).

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More