LAW OF SINES TO FIND ALL MISSING SIDES AND ANGLES

The sine rule is a set of equations which connects the lengths of the sides of any triangle with the sine of the opposite angles.

The triangle does not have to be right angled for sine rule to be used.

In any triangle ABC, with sides a, b and c units in length and opposite sides A, B and C respectively.

asin A = bsin B = csin C(or)sin Aa = sin Bb = sin Cc
sine-law

Solve for all missing sides and angles in each triangle. Round to the nearest tenth.

Problem 1 :

sine-law-missing-sides-angles-q1

Solution:

AB = c, AC = b, BC = a = 9.8 cm

∠A = 71, ∠B = 51

Find b :

asin A=bsin B=csin C9.8sin 71°=bsin 51°=csin C9.8sin 71°=bsin 51°9.80.945=b0.7770.945b = 9.8×0.7770.945b=7.614b=7.6140.945b=8.05 cm

In triangle ABC,

∠A + ∠B + ∠C = 180

71 + 51 + ∠C = 180

∠C = 180 - 122

∠C = 58

Find c :

9.8sin 71°=csin 58°9.80.945=c0.8480.945c = 9.8×0.8480.945c=8.31c=8.310.945c=8.79 cm

Hence the missing sides and missing angles are 8.05 cm, 8.79 cm and 58º respectively.

Problem 2 :

sine-law-missing-sides-angles-q2.png

Solution:

JL = 50 m, ∠J = 42º, ∠K = 84º

Find j :

jsin J=ksin K=lsin Ljsin 42°=50sin 84°=lsin Ljsin 42°=50sin 84°j0.669=500.9940.994j = 50×0.6690.994j=33.45j=33.450.994j=33.65 m

In triangle JKL,

∠J + ∠K + ∠L = 180

42 + 84 + ∠L = 180

∠L = 180 - 126

∠L = 54

Find l :

50sin 84°=lsin 54°500.994=l0.8090.994 l = 50×0.8090.994 l=40.45l=40.450.994l=40.7 m

Hence the missing sides and missing angles are 33.65 m, 40.7 m and 54º respectively.

Problem 3 :

sine-law-missing-sides-angles-q3

Solution:

RQ = s, QS = r = 15 m, RS = q = 17.5 m

∠Q = 98º

Find ∠R :

qsin Q=rsin R=ssin S17.5sin 98°=15sin R=ssin S17.5sin 98°=15sin R17.50.99=15sin R17.5 sin R= 15×0.9917.5 sin R=14.85sin R=14.8517.5sin R=0.8485R=58.1°

In triangle QRS,

∠Q + ∠R + ∠S = 180

98 + 58.1 + ∠S = 180

∠S = 180 - 156.1

∠S = 23.9

Find s :

17.5sin 98°=ssin 23.9°17.50.99=s0.4050.99 s = 17.5×0.4050.99 s=7.087s=7.0870.99s=7.16 m

Hence the missing sides and missing angles are 7.16 m and 58.1º, 23.9º respectively.

Problem 4 :

sine-law-missing-sides-angles-q4.png

Solution:

XZ = y = 29 mm, XY = z,  YZ = x

∠X = 22º, ∠Z = 39º

In triangle XYZ,

∠X + ∠Y + ∠Z = 180

22 + ∠Y + 39 = 180

∠Y = 180 - 61

∠Y = 119

Find x :

xsin X=ysin Y=zsin Zxsin 22°=29sin 119°=zsin 39°xsin 22°=29sin 119°x0.374=290.8740.874x= 29×0.3740.874x=10.846x=10.8460.874x=12.4 mm

Find z :

29sin 119°=zsin 39°290.874=z0.6290.874 z = 29×0.6290.874 z=18.241z=18.2410.874z=20.9 mm

Hence the missing sides and missing angles are 12.4 mm, 20.9 mm and 119º respectively.

Problem 5 :

sine-law-missing-sides-angles-q5.png

Solution:

GH = i = 8 cm, HI = g = 13 cm, GI = h

∠G = 115º

Find ∠I :

gsin G=hsin H=isin I13sin 115°=hsin H=8sin I13sin 115°=8sin I130.906=8sin I13 sin I= 8×0.90613 sin I=7.248sin I=7.24813sin I=0.557I=33.9°

In triangle GHI,

∠G + ∠H + ∠I = 180

115 + ∠H + 33.9 = 180

∠H = 180 - 148.9

∠H = 31.1

Find h :

13sin 115°=hsin 31.1°130.906=h0.5160.906 h = 13×0.5160.906 h=6.708h=6.7080.906h=7.4 cm

Hence the missing sides and missing angles are 7.4 cm and 31.1º, 33.9º respectively.

Problem 6 :

sine-law-missing-sides-angles-q6.png

Solution:

MN = o = 28 m, MO = n = 31 m, No = m

∠N = 62º

msin M=nsin N=osin Omsin M=31sin 62°=28sin o31sin 62°=28sin o310.882=28sin o31 sin o= 28×0.88231 sin o=24.696sin o=24.69631sin o=0.796o=52.9°

In triangle MNO,

∠M + ∠N + ∠O = 180

∠M  + 62 + 52.9 = 180

∠M = 180 - 114.9

∠M = 65.1

Find m :

msin 65.1°=31sin 62°m0.907=310.8820.882 m = 31×0.9070.882 m=28.117m=28.1170.882m=31.8 m

Hence the missing sides and missing angles are 31.8 m and 65.1º, 52.9º respectively.

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More