What is rhombus ?
A rhombus is a quadrilateral in which all sides are equal is length.
Problem 1 :
For rhombus JMLK, find each angle measure.
1) ∠1 2) ∠2 3) ∠3 4) ∠4 5) ∠JML 6) ∠MLK
Solution :
1) ∠1 = 25 (Diagonals bisect the angles)
2) ∠2 = 90
3) ∠3 :
∠1 + ∠2 +∠3 = 180
25 + 90 + ∠3 = 180
115 + ∠3 = 180
∠3 = 180 -115
∠3 = 65
4) ∠4 = 65
5) ∠JML :
∠JML = ∠3 + ∠4
= 65 + 65
= 130
6) ∠MLK :
∠MJK = ∠MLK
∠MLK = ∠1 + ∠2
= 25 + 25
= 50
Problem 2 :
For rhombus JLMK, find each line segment and angle measure.
1) ∠1 2) ∠2 3) ∠3 4) ∠4 5) ∠5 6) LK 7) MK
Solution :
1) ∠1 = 40
2) ∠2 = 40
3) ∠3 :
∠1 + ∠5 + ∠3 = 180
40 + 90 + ∠3 = 180
130 + ∠3 = 180
∠3 = 180 - 130
∠3 = 50
4) ∠4 = ∠3 = 50
5) ∠5 = 90
6) LK = 20
7) MK = 9.3 + 9.3 ==> 18.6
Problem 3 :
For rhombus SLTM, find the missing values. If ∠1 = 3x + 8, ∠2 = 11x - 24, find
1) x = 2) ∠1 3) ∠2 4) ∠3 5) ∠4 6) ∠5
Solution :
Since the diagonal will bisect the angle,
∠1 = ∠2
3x + 8 = 11x - 24
3x - 11x = -24 - 8
-8x = -32
x = 32/8
x = 4
2) ∠1 = 3x + 8
= 3(4) + 8
= 12 + 8
∠1 = 20
3) ∠2 = 20
4) ∠3 :
In the triangle,
The diagonals will intersect at right angle.
∠1 + ∠3 + 90 = 180
20 + ∠3 + 90 = 180
110 + ∠3 = 180
∠3 = 180 - 110
∠3 = 70
5) ∠4 = 70
6) ∠5 = 90
Problem 4 :
For rhombus SLTM, find the missing values, if ∠1 = 5x and ∠2 = x2 - 50, find
1) x = 2) ∠1 3) ∠2 4) ∠3 5) ∠4 6) ∠5
Solution :
∠1 = ∠2 (since the diagonal will bisect the angle at vertex)
5x = x2 - 50
x2 - 5x - 50 = 0
(x - 10) (x + 5) = 0
x = 10 and x = -5 (not admissible)
2) ∠1 = 5x ==> 5(10) ==> 50
3) ∠2 = 50
4) ∠3 :
∠1 + ∠3 + ∠5 = 180
50 + ∠3 + 90 = 180
140 + ∠3 = 180
∠3 = 180 - 140
∠3 = 40
5) ∠4 = 40
6) ∠5 = 90
Problem 5 :
Find
1) ∠D 2) ∠DCB 3) ∠1 4) ∠2 5) ∠3 6) ∠4
Solution :
1) ∠D = 130 = ∠B
2) ∠DCB = ∠1 + ∠2
In triangle ACB,
∠2 + ∠3 + ∠ABC = 180
∠2 = ∠3
∠2 + ∠2 + 130 = 180
2 ∠2 = 180 - 130
2 ∠2 = 50
∠2 = 50/2
∠2 = 25
∠1 = ∠2 (angle bisector)
∠DCB = 25 + 25
∠DCB = 50
3) ∠1 = ∠2 = ∠3 = ∠4 = 25
Problem 6 :
Find all missing angles.
Solution :
The triangle, which is on the right
54 + ∠3 + ∠4 = 180
∠3 = 54
54 + 54 + ∠4 = 180
108 + ∠4 = 180
∠4 = 180 - 108
∠4 = 72
∠1 = 72
∠2 = 54
Problem 7 :
Find the measure of the numbered angles.
Solution :
In triangle ADB,
∠ADB + ∠ABD + ∠DAB = 180
20 + 20 + ∠DAB = 180
∠DAB = 180 - 40
∠DAB = 140
∠1 = 140/2 ==> 70
20 + ∠1 + ∠2 = 180
20 + 70 + ∠2 = 180
∠2 = 180 - 90
∠2 = 90
∠3 = 70
∠4 = 70
May 21, 24 08:51 PM
May 21, 24 08:51 AM
May 20, 24 10:45 PM