What is rhombus ?
A rhombus is a quadrilateral in which all sides are equal is length.
Find the all numbered angles in the following rhombus.
Problem 1 :
Solution :
Here ∠2 = ∠1, because the diagonal is the angle bisector.
∠2 = ∠4, because the equal sides will create equal angles.
∠4 = ∠3
73 + ∠2 + ∠4 = 180
73 + ∠2 + ∠2 = 180
73 + 2∠2 = 180
2∠2 = 180 - 73
2∠2 = 107
∠2 = 107/2 ==> 53.5
∠2 = 53.5
∠1 = 53.5
∠4 = 53.5
∠3 = 53.5
Problem 2 :
Solution :
∠2 = ∠4
In the triangle below,
∠2 + ∠4 + 104 = 180
∠4 + ∠4 = 180 - 104
2∠4 = 76
∠4 = 76/2
∠4 = 38
∠3 = 38 (angle bisector)
∠2 = 38 (Equal sides, will have same angles)
∠1 = 38 (Angle bisector)
Problem 3 :
Solution :
In the triangle above,
∠1 + ∠2 + 26 = 180
∠1 = 26
26 + ∠2 + 26 = 180
52 + ∠2 = 180
∠2 = 180 - 52
∠2 = 128
∠3 = 128 (Opposite angles)
Problem 4 :
Solution :
∠1 = 118
∠1 + ∠2 + ∠2 = 180
118 + 2∠2 = 180
2∠2 = 180 - 118
2∠2 = 62
∠2 = 62/2
∠2 = 31
∠3 = 31
Problem 5 :
Solution :
From the figure given above, ∠3 = 58
∠2 = 90
∠1 + ∠2 + ∠3 = 180
∠1 + 90 + 58 = 180
∠1 + 148 = 180
∠1 = 180 - 148
∠1 = 32
∠4 = 32
Problem 6 :
Solution :
∠2 = ∠3
Here ∠1 = 90
∠1 + 30 + ∠2 = 180
90 + 30 + ∠2 = 180
120 + ∠2 = 180
∠2 = 180 - 120
∠2 = 60
∠3 = 60
∠4 = 30
Problem 7 :
Solution :
∠4 = 90
∠2 = 35
∠3 + ∠4 + 35 = 180
∠3 + 90 + 35 = 180
∠3 + 125 = 180
∠3 = 180 - 125
∠3 = 55
∠1 = 55
Problem 8 :
Solution :
∠2 = 90, ∠1 = 60
∠1 + ∠2 + ∠3 = 90
60 + 90 + ∠3 = 180 150 + ∠3 = 180 ∠3 = 180 - 150 ∠3 = 30 |
Problem 9 :
Solution :
∠1 = ∠3 = 90
In a triangle,
∠1 + ∠2 + 35 = 180
90 + ∠2 + 35 = 180
∠2 + 125 = 180
∠2 = 180 - 125
∠2 = 55
Problem 10 :
Solution :
∠1 = ∠4
∠1 + 52 + 52 + ∠4 = 180
∠1 + ∠1 + 104 = 180
2∠1 = 180 - 104
2∠1 = 76
∠1 = 76/2
∠1 = 38
∠2 = 90
∠3 = 90 (vertically opposite angles)
May 21, 24 08:51 PM
May 21, 24 08:51 AM
May 20, 24 10:45 PM