HOW TO FIND CHARACTERSTICS OF GRAPHS

Domain :

How the graph is spread on the x-axis is domain. In other words, for the set of x values for which it is spreading horizontally, that is known as domain.

Range :

How the graph is spread on the y-axis is range. In other words, for the set of y-values for which it is spreading vertically, that is known as range.

Maximum or minimum :

The point where the graph reaches its maximum height is maximum. When the curve changes its direction from increasing to decreasing, there will be a maximum point.

The point where the graph reaches its minimum height is minimum. When the curve changes its direction from decreasing to increasing, there will be a minimum point.

x and y intercepts :

The curve where it cuts the x-axis is known as x-intercept, the curve where it cuts the y-axis is known as y-intercept.

How to check if it is discreate or continuous ?

Discrete functions have scatter plots as graphs and continuous functions have lines or curves as graphs.

Problem 1 :

Use the graphs to state the various features.

i)  Domain

ii)  Range

iii)  Maximum

iv)  Minimum

v)  Discrete or Continuous?

vi)  y – intercept:

vii)  x – intercept:

viii)  7𝑓(5)=

Solution :

i)  Domain: (-5, 5]

ii)  Range : [-4, 4]

iii)  Maximum: y = 4

iv)  Minimum: y = -4

v) Discrete or Continuous?

Continuous

vi)  y – intercept:

y = 0

vii)  x – intercept:

x = 0 and x = 5

viii)  7 𝑓(5)  = 0

Problem 2 :

i)  Domain:

ii)  Range:

iii)  Maximum:

iv)  Minimum:

v)  Interval of Increase:

vi)  Interval of Decrease:

vii)  𝑓(2) + 𝑓(9) =

Solution :

i)  Domain : [0, 12]

ii)  Range: [0, 8]

iii)  Maximum: y = 8

iv)  Minimum: y = 0

v)  Interval of Increase: (0, 3)

vi)  Interval of Decrease: (9, 12)

vii)  𝑓(2) = 4 and 𝑓(9) = 8

f(2) + f(9) = 4 + 8 ==> 12

Problem 3 :

i) Domain

ii) Increasing

iii)  Range

iv)  Decreasing

v)  x-intercept (s)

vi)  Positive

vii)  y-intercept

viii)  Negative

ix)  Maximum

x)  Minimum

xi) End behaviour

Solution :

Domain

Increasing

Range

Decreasing

x-intercept(s)

Positive

y-intercept

Negative

Maximum

 Minimum

 [-3, 14]

(-3, 9) ꓴ (11, 14)

[-5, 10]

(9,14)

(4.5,0)

(4.5,14]

(0,-3)

[-3,4.5)

(9,10)

(-3,-5)

End Behavior: 𝑎𝑠 x → −3, y → −5; 𝑎𝑠 x → 14, y → 10

Problem 4 :

i)  Domain

ii)  Range

iii)  x-intercept(s)

iv)  y-intercept

v)  Maximum

vi) Increasing

vii) Decreasing

viii)  Positive

ix) Negative

x) Minimum

xi) End behaviors

Solution :

Domain

Increasing

Range

Decreasing

x-intercept(s)

Positive

y-intercept

Negative

Maximum

Minimum

End Behavior

(-∞, ∞) 

(-2,-0.5) ꓴ (1, ∞)

(0, ∞)

(-∞,-2) ꓴ (-0.5,1)

 (-2,0) & (1,0)

(-∞,-2) ꓴ (-2,1) ꓴ(1, ∞)

(0,4)

none

(-0.5,5.063)

 (-2,0) & (1,0)

x → −∞, y → +∞; 𝑎𝑠 x → +∞, y → +∞

Problem 5 :

i)  Domain

ii)  Increasing

iii)  Range

iv)  Decreasing

v)  x-intercept(s)

vi)  Positive

vii)  y-intercept

viii)  Maximum

ix)  Minimum

x) End behavior

Solution :

i)  Domain

ii)  Increasing

iii)  Range

iv)  Decreasing

v)  x-intercept(s)

vi)  Positive

vii)  y-intercept

viii)  Maximum

ix)  Minimum

x) End behavior

(-∞, ∞)

(2, ∞)

(1, ∞)

(-∞,2)

none

(-∞, ∞) 

(0,5)

none

(2,1)

x → −∞, y → +∞; 𝑎𝑠 x → +∞, y → +∞

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More