HOW TO FIND AVERAGE VALUE OF FUNCTION ON GIVEN INTERVAL

Let f(x) be a function on the interval [a,b]. If we divided our interval into n equally sized intervals and took the sample at left endpoints f(xi), then an approximation for the average value would be given by the formula:

average-value-of-function

Find the average value of the function over the given interval

Problem 1 :

f(x) = -x2 + 2x + 1 for [1, 4]

Solution :

a = 1, b = 4, then b - a = 4 - 1 ==> 3

fave = 1341-x2+2x+1dx= 13-x2+12+1+2x1+11+1+x41= 13-x33+2x22+x41= 13-433+42+4--133+12+1= 13-643+20--13+2= 13-64+603--1+63= 13-4-53= 13-93= -1

So, the average value of the given function in the given interval is -1.

Problem 2 :

Find the average value of the function on the interval. At what point(s) in the interval does the function assume its average value?

f(x)= -x22, [0, 3]

Solution :

a = 0, b = 3, b - a = 3 - 0 ==> 3

Applying the values in the formula, we get

fave = 1330-x22dx= 1312-x2+12+130= 16-x3330Applying the limits, we get= 16-333-0= 16-273= -32

Average value of the given function in the given interval is -3/2. 

Let the required value be c.

-c2/2 = -3/2

c2 = 3

c = √3

c = ±√3

-√3 is not in the given interval. So, the required value is √3

Problem 3 :

f(x) = 3ex on [-1, 0]

Solution :

a = 1, b = 0

b - a ==> 0 - 1 ==> -1

fave = 1-10-13exdx= 1-13ex0-1Applying the limits, we get= -3e0-e-1= -31-1e= -31-12.718= -3(0.63)= -1.89

Problem 4 :

f(x)=-2e2x+4

Solution :

Here a = -3, b = -2, then

b - a = -2 - (-3) ==> -2 + 3 ==> 1

fave = 11-2--3-2e2x+4dx= -2e2x+42-2-3= -e2x+4-2-3Applying the limits, we get= -e2(-2)+4-e2(-3)+4= -e-4+4-e-6+4= -1-e-2= -1-1e2=1e2-1=1(2.718)2-1= 0.135 - 1= 0.86

Problem 5 :

f(x)=csc2x, π2,4

Solution :

fave = 14-π24π2csc2x dx= 13π-2π44π2csc2x dx= 4π4π2csc2x dx= 4π [-cot x]4π2= 4π-cot4+cotπ2= 4π[-(-1)-0]= 4π=43.14= 1.27

So, the average value of the function is 1.27

Problem 6 :

f(x) = 2 sin x , [-π/3, π/4]

Solution :

fave = 1π4--π3π4-π32 sin x dx= 2π4+π3)π4-π3sin x dx= 212[-cos x]π4-π3= 24-cos π4+cos -π3= 24-12+12= 24-2+222= 12-2+22= 127(3.14)-2+1.4141.414= 127(3.14)(-0.414)= -0.22

So, the average value of the function is -0.22.

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More