GRAPH THE ELLIPSE AND IDENTIFY THE CENTER VERTICES AND FOCI

Ellipse Symmetric about x-axis :

ellipse-symmeteric-about-x-axis

Ellipse Symmetric about y-axis :

ellipse-symmeteric-about-y-axis.png

Graph the ellipse and identify the center, vertices and foci.

Problem 1 :

x29+y225=1

Solution:

ellipse-q1
x29+y225=1

b > a

The above ellipse is symmetric about y-axis.

a2 = 25

a2 = 52

a = 5

b2 = 9

b2 = 32

b = 3

Center:

(0, 0)

Vertices:

A(0, a) and A'(0, -a)

A(0, 5) and A'(0, -5)

Foci:

c2 = a2 - b2

c2 = 52 - 32

= 25 - 9

c2 = 16

c = √16

c = ±4

F1(0, 4) F2(0, -4)

Problem 2 :

4x2 + 9y2 = 36

Solution:

4x2 + 9y2 = 36

x29+y24=1
ellipse-q2.png

a2 = 9 and b2 = 4

a = 3 and b = 2

Since, a > b, the ellipse symmetric about x-axis.

Center:

(0, 0)

Vertices:

A(a, 0) and A'(-a, 0)

A(3, 0) and A'(-3, 0)

Foci:

c2 = a2 - b2

c2 = 32 - 22

= 9 - 4

c2 = 5

c = ±√5

F1(√5, 0) F2(-√5, 0)

Problem 3 :

x2 + 4y2 = 36

Solution:

x2 + 4y2 = 36

x236+y29=1
ellipse-q3.png

a2 = 36 and b2 = 9

a = 6 and b = 3

Since, a > b, the ellipse symmetric about x-axis.

Center:

(0, 0)

Vertices:

A(a, 0) and A'(-a, 0)

A(6, 0) and A'(-6, 0)

Foci:

c2 = a2 - b2

c2 = 62 - 32

= 36 - 9

c2 = 27

c = ±3√3

F1(3√3, 0) F2(-3√3, 0)

Problem 4 :

(x+1)2+(y-3)24=1

Solution:    

(x+1)2+(y-3)24=1

Let X = x + 1 and Y = y - 3

X21+Y24=1
ellipse-q4.png

Since, b > a, the ellipse symmetric about y-axis.

a2 = 4 and b2 = 1

a = 2 and b = 1

Center:

(0, 0)

X = 0 and Y = 0

Substitute X = x + 1 and Y = y - 3

x + 1 = 0 and y - 3 = 0

x = -1 and y = 3

The center is (-1, 3).

Vertices:

A(0, a) and A'(0, -a)

A(0, 2) and A'(0, -2)

(0, 2)

X = 0 and Y = 2

x + 1 = 0 and y - 3 = 2

x = -1 and y = 5

(-1, 5)

(0, -2)

X = 0 and Y = -2

x + 1 = 0 and y - 3 = -2

x = -1 and y = 1

(-1, 1)

The vertices are (-1, 5) and (-1, 1).

Foci:

c2 = a2 - b2

= 4 - 1

c2 = 3

c = √3

Here (h, k) = center of the ellipse

h = -1

k = 3

vertical ellipse = (h, k ± c)

= (-1, 3 ± √3)

Problem 5 :

(x-1)24+(y+2)29=1

Solution:

(x-1)24+(y+2)29=1

Let X = x - 1 and Y = y + 2

X24+Y29=1
ellipse-q5.png

Since, b > a, the ellipse symmetric about y-axis.

a2 = 9 and b2 = 4

a = 3 and b = 2

Center:

(0, 0)

X = 0 and Y = 0

Substitute X = x - 1 and Y = y + 2

x - 1 = 0 and y + 2 = 0

x = 1 and y = -2

The center is (1, -2).

Vertices:

A(0, a) and A'(0, -a)

A(0, 3) and A'(0, -3)

(0, 3)

X = 0 and Y = 3

x - 1 = 0 and y + 2 = 3

x = 1 and y = 1

(1, 1)

(0, -3)

X = 0 and Y = -3

x - 1 = 0 and y + 2 = -3

x = 1 and y = -5

(1, -5)

The vertices are (1, 1) and (1, -5).

Foci:

c2 = a2 - b2

= 9 - 4

c2 = 5

c = √5

Here (h, k) = center of the ellipse

h = 1

k = -2

vertical ellipse = (h, k ± c)

= (1, -2 ± √5)

Problem 6 :

36(x + 4)2 + (y + 3)2 = 36

Solution:

36(x + 4)2 + (y + 3)2 = 36

(x+4)21+(y+3)236=1Let X=x+4 and Y=y+3X21+Y236=1
ellipse-q6.png

Since, b > a, the ellipse symmetric about y-axis.

a2 = 36 and b2 = 1

a = 6 and b = 1

Center:

(0, 0)

X = 0 and Y = 0

Substitute X = x + 4 and Y = y + 3

x + 4 = 0 and y + 3 = 0

x = -4 and y = -3

The center is (-4, -3).

Vertices:

A(0, a) and A'(0, -a)

A(0, 6) and A'(0, -6)

(0, 6)

X = 0 and Y = 6

x + 4 = 0 and y + 3 = 6

x = -4 and y = 3

(-4, 3)

(0, -6)

X = 0 and Y = -6

x + 4 = 0 and y + 3 = -6

x = -4 and y = -9

(-4, -9)

The vertices are (-4, 3) and (-4, -9).

Foci:

c2 = a2 - b2

= 36 - 1

c2 = 35

c = √35

Here (h, k) = center of the ellipse

h = -4

k = -3

vertical ellipse = (h, k ± c)

= (-4, -3 ± √35)

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More