GCF WITH NEGATIVES AND SPECIAL CASE POLYNOMIALS

Factor each completely.

Problem 1 :

16n2 - 9

Solution :

16n2 - 9

= (42n2 - 32)

= ((4n)2 - 32)

(a2 - b2) = (a + b) (a - b)

= (4n + 3) (4n - 3)

Problem 2 :

4m2 - 25

Solution :

= 4m2 - 25

= (22m2 - 52)

= ((2m)2 - 52)

(a2 - b2) = (a + b) (a - b)

= (2m + 5) (2m - 5)

Problem 3 :

16b2 - 40b + 25

Solution :

= 16b2 - 40b + 25

= 16b2 - 20b - 20b + 25

= 4b(4b - 5) - 5(4b - 5)

=  (4b - 5) (4b - 5)

= (4b - 5)2

Problem 4 :

4x2 - 4x + 1

Solution :

= 4x2 - 4x + 1

= 4x2 - 2x - 2x + 1

= 2x(2x - 1) - 1(2x - 1)

= (2x - 1) (2x - 1)

= (2x - 1)2

Problem 5 :

9x2 - 1

Solution :

= 9x2 - 1

= (32x2 - 12)

= ((3x)2 - 12)

(a2 - b2) = (a + b) (a - b)

= (3x + 1) (3x - 1)

Problem 6 :

n2 - 25

Solution :

= n2 - 25

= (n2 - 52)

(a2 - b2) = (a + b) (a - b)

= (n + 5) (n - 5)

Problem 7 :

n4 - 100

Solution :

= n4 - 100

= ((n2)2 - 102)

(a2 - b2) = (a + b) (a - b)

(n2 + 10) (n2 - 10)

Problem 8:

a4 - 9

Solution :

= a4 - 9

= ((a2)2 - 32)

(a2 - b2) = (a + b) (a - b)

= (a2 + 3) (a2 - 3)

Problem 9 :

k4 - 36

Solution :

= k4 - 36

= ((k2)2 - 62)

(a2 - b2) = (a + b) (a - b)

= (k2 + 6) (k2 - 6)

Problem 10 :

n4 - 49

Solution :

= n4 - 49

= ((n2)2 - 72)

(a2 - b2) = (a + b) (a - b)

(n2 + 7) (n2 - 7)

Problem 11 :

98n2 - 200

Solution :

= 98n2 - 200

= 2(49n2 - 100)

= 2(72n2-102)

= 2((7n)2 - 102)

(a2 - b2) = (a + b) (a - b)

= 2(7n + 10) (7n - 10)

Problem 12 :

3 + 6b + 3b2

Solution :

= 3b2 + 6b + 3

= 3(b2 + 2b + 1)

= 3(b + 1)2

Problem 13 :

400 - 36v2

Solution :

= 400 - 36v2

= 4(100 - 9v2)

= 4(102 - 32v2)

= 4(102 - (3v)2)

(a2 - b2) = (a + b) (a - b)

4(10 + 3v) (10 - 3v)

Problem 14 :

100x2 + 180x + 81

Solution :

100x2 + 180x + 81

100x2 + 90x + 90x + 81

10x(10x + 9) + 9(10x + 9)

(10x + 9) (10x + 9)

(10x + 9)2

Problem 15 :

10n2 + 100n + 250

Solution :

10n2 + 100n + 250

10(n2 + 10n + 25)

10(n2 + 5n + 5n + 25)

10n(n + 5) + 5(n + 5)

10(n + 5) (n + 5)

10(n + 5)2

Problem 16 :

49n2 - 56n + 16

Solution :

49n2 - 56n + 16

49n2 - 28n - 28n + 16

7n(7n - 4) - 4(7n - 4)

(7n - 4) (7n - 4)

(7n - 4)2

Problem 17 :

49x2 - 100

Solution :

49x2 - 100

(72x2 - 102)

((7x)2 - 102)

(a2 - b2) = (a + b) (a - b)

(7x + 10) (7x - 10)

Problem 18 :

1 - r2

Solution :

1 - r

12 - r2

(a2 - b2) = (a + b) (a - b)

(1 + r) (1 - r)

Problem 19 :

10p3 - 1960p

Solution :

10p3 - 1960p

10p(p2 - 196)

10p(p- 142)

(a2 - b2) = (a + b) (a - b)

10p(p + 14) (p - 14)

Problem 20 :

343b2 - 7b4

Solution :

343b2 - 7b4

7b2(49 - b2)

7b2(72 - b2)

(a2 - b2) = (a + b) (a - b)

7b2(7 + b) (7 - b)

Problem 21 :

81v4 - 900v2

Solution :

81v4 - 900v2

9v2(9v2 - 100)

9v2(32v2-102)

9v2((3v)2 - 102)

(a2 - b2) = (a + b) (a - b)

9v2(3v + 10) (3v - 10)

Problem 22 :

200m4 + 80m3 + 8m2

Solution :

200m4 + 80m3 + 8m2

8m2(25m2 + 10m + 1)

8m2(25m2 + 5m + 5m + 1)

8m2 5m(5m + 1) + 1(5m + 1)

8m2 (5m + 1) (5m + 1)

8m2 (5m + 1)2






Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More