(a + b)2 = a2 + 2ab + b2
Subtracting 2ab on both sides, we get
a2 + b2 = (a + b)2 - 2ab
(a - b)2 = a2 - 2ab + b2
Adding 2ab on both sides, we get
a2 + b2 = (a + b)2 - 2ab
Problem 1 :
If p + q = 12 and pq = 22, then find p² + q².
Solution :
p + q = 12 and pq = 22
Write the formula for a² + b² = (a + b)² - 2ab
p² + q² = (p + q)² - 2pq
= (12)² - 2(22)
= 144 – 44
p² + q² = 100
Problem 2 :
If a + b = 25 and a² + b² = 225, then find ab.
Solution :
a + b = 25 and a² + b² = 225
Write the formula for a² + b² = (a + b)² - 2ab
225 = (25)² - 2ab
225 = 625 – 2ab
2ab = 625 – 225
2ab = 400
ab = 400 / 2
ab = 200
Problem 3 :
If x – y = 13 and xy = 28, then find x² + y².
Solution :
x – y = 13 and xy = 28
Write the formula for a² + b² = (a - b)² + 2ab
x² + y² = (x - y)² + 2xy
= (13)² + 2(28)
= 169 + 56
x² + y² = 225
Problem 4 :
If m - n = 16 and m² + n² = 400, then find mn.
Solution :
m - n = 16 and m² + n² = 400
Write the formula for a² + b² = (a - b)² + 2ab
m² + n² = (m - n)² + 2mn
400 = (16)² - 2mn
400 = 256 – 2mn
2mn = 400 – 256
2mn = 144
mn = 144 / 2
mn = 72
Problem 5 :
If a² + b² = 74 and ab = 35, then find a + b.
Solution :
a² + b² = 74 and ab = 35
Write the formula for a² + b² = (a + b)² - 2ab
74 = (a + b)² - 2(35)
74 = (a + b)² - 70
(a + b)² = 74 – 70
(a + b)² = 4
a + b = 2
Problem 6 :
Factorise y² + 4y + 4
Solution :
= y² + 4y + 4
= y² + 2(y)(2) + 22
It is in the form of a² + 2ab + b2
= (y + 2)2
= (y + 2)(y + 2)
Problem 7 :
Factorise 9x²y - 24xy2 + 16y3
Solution :
= 9x²y - 24xy2 + 16y3
= y(9x² - 24xy + 16y2)
= y(3²x² - 24xy + 4²y2)
= y[(3x)² - 2(3x)(4y) + (4y)2]
It is in the form of a² - 2ab + b2
= y(3x + 4y)2
= y (3x + 4y)(3x + 4y)
Problem 8 :
If x² + 1/x2 = 6, find the value of x4 + 1/x4
Solution :
x² + 1/x2 = 6
a2 + b2 = (a + b)2 - 2ab
x4 + 1/x4 = (x2)2 + (1/x2)2
= (x2 + 1/x2)2 - 2x2(1/x2)
= (x2 + 1/x2)2 - 2
= 62 - 2
= 36 - 2
x4 + 1/x4 = 34
Problem 9 :
Find the value of k if
xy2k = (4xy + 3y)² - (4xy - 3y)²
Solution :
xy2k = (4xy + 3y)² - (4xy - 3y)²
= (4xy)2 + 2(4xy)(3y) + (3y)² - [(4xy)2 + 2(4xy)(3y) + (3y)²]
= 16x2y2 + 24xy2 + 9y² - [16x2y2 - 24xy2 + 9y²]
= 16x2y2 + 24xy2 + 9y² - 16x2y2 + 24xy2 - 9y²
= 48xy2
This can be compared with xy2k
k = 48
Problem 10 :
If a2 + b2 = 9 and ab = 4
Find the value of 3(a + b)2 - 2(a - b)2
Solution :
a2 + b2 = 9 and ab = 4
= 3(a + b)2 - 2(a - b)2
= 3(a2 + 2ab + b2) - 2(a2 - 2ab + b2)
= 3a2 + 6ab + 3b2 - 2a2 + 4ab - 2b2
= 3a2 - 2a2 + 6ab + 4ab + 3b2 - 2b2
= a2 + 10ab + b2
= 9 + 10(4)
= 9 + 40
= 49
Problem 11 :
If x + 1/x = 8, find the value of x2 + 1/x2
Solution :
x + 1/x = 8
x2 + 1/x2 = (x + 1/x)2 - 2 x(1/x)
= (x + 1/x)2 - 2
Applying the value of x + 1/x, we get
= 82 - 2
= 64 - 2
= 62
Problem 12 :
If a - 1/a = 5, find the value of a2 + 1/a2
Solution :
a - 1/a = 5
a2 + 1/a2 = (a - 1/a)2 + 2 a(1/a)
= (a - 1/a)2 - 2
Applying the value of a + 1/a, we get
= 52 - 2
= 25 - 2
= 23
Problem 13 :
If a2 + 1/a2 = 23, find the value of (a + 1/a)
Solution :
a2 + 1/a2 = 23
a2 + 1/a2 = (a + 1/a)2 - 2 a(1/a)
23 = (a + 1/a)2 - 2
(a + 1/a)2 = 23 + 2
(a + 1/a)2 = 25
(a + 1/a) = √25
(a + 1/a) = -5 and 5
Problem 14 :
If x2 + 1/x2 = 51, find the value of (x - 1/x)
Solution :
x2 + 1/x2 = 51
x2 + 1/x2 = (x - 1/x)2 + 2 x(1/x)
Applying the given value, we get
51 = (x - 1/x)2 + 2
(x - 1/x)2 = 51 - 2
(x - 1/x)2 = 49
(x - 1/x) = √49
x - 1/x = -7 and 7
May 21, 24 08:51 PM
May 21, 24 08:51 AM
May 20, 24 10:45 PM