FINDING THE MISSING DIAGONAL OF A RHOMBUS

In the above figure, ABCD is a rhombus.

Formula for the Area of the Rhombus,

Area = 1/2 × d1 × d2

(Where dand dare the diagonals of the rhombus)

In figure, AC = d1 and BD = d2

Area = 1/2 × AC × BD

Find the length of the missing diagonal in each rhombus.

Problem 1 :

If WY = 70 yd, find XZ.

Solution :

Given, Area = 1925 yd² and WY = 70 yd

Area of the rhombus = 1/2 × d1 × d2

Here d1WY and  d2 XZ

Area = 1/2 × WY × XZ 

1925 yd² = 1/2 × 70 yd × d2

1925 yd² = 35 yd × d

(1925 yd²) / 35 yd = d2 

XZ = d2 = 55 yd

Problem 2 :

If FH = 6 ft, find EG.

Solution :

Given, Area = 15 ft² and FH = 6 ft

Area of the rhombus = 1/2 × d1 × d2

Here FH = d1 and EG = d2

Area = 1/2 × FH × EG

15 ft² = 1/2 × 6 ft × d

15 ft² = 3 ft × d

(15 ft²) / 3 ft = d

EG = d2 = 5 ft

Problem 3 :

If KM = 35 in, find LN.

Solution :

Given, Area = 700 in² and KM = 35 in

Area of the rhombus = 1/2 × d1 × d2

Here d1 = KM and  d2 LN

Area = 1/2 × KM × LN

700 in² = 1/2 × 35 in × d2

 (700 in² × 2) / 35 in = d2

(1400 in²) / 35 in = d2

LN = d2 = 40 in

Problem 4 :

If VT = 7ft, find SU.

Solution :

Given, Area = 80.5 ft² and VT = 7 ft

Area of the rhombus = 1/2 × d1 × d2

Here d1 = VT and  d= SU

Area = 1/2 × VT × SU

80.5 ft² = 1/2 × 7 ft × d2

(80. 5 ft² × 2) / 7 ft =  d2

d2 = (161 ft²) / 7 ft

SU = d= 23 ft

Problem 5 :

If BD = 16 in, find AC.

Solution :

Given, Area = 192 in² and BD = 16 in

Area of the rhombus = 1/2 × d1 × d2

Here d1 = BD and  d= AC

Area = 1/2 × BD × AC

192 in² = 1/2 × 16 in × d2

192 in² =  8 in × d2

d2 = (192 in²) / 8 in

AC = d2 = 24 in

Problem 6 :

If VX = 49 yd, find UW.

Solution :

Given, Area = 906.5 yd² and VX = 49 yd

Area of the rhombus = 1/2 × d1 × d2

Here d1 = VX and  d= UW

Area = 1/2 × VX × UW

906.5 yd² = 1/2 × 49 yd × d2

(906.5 yd² × 2) / 49 yd = d

(1813 yd²) / 49 yd = d2

UW = d2 = 37 yd

Problem 7 :

The length of one of the diagonal of a rhombus is 38 inches. Find the length of the other diagonal, if the area is 646 square inches.

Solution :

Given, Area = 646 square inches

Length of one diagonal d= 38 inches

Length of other diagonal d2 = ?

Area of the rhombus = 1/2 × d1 × d2

646 in² = 1/2 × 38 in × d2

646 in² = 19 in × d2

(646 in²) / 19 in = d2

d2 = 34 inches

So, the length of other diagonal of a rhombus is 34 in.

Problem 8 :

The area of a rhombus is 125 square yards. If one of the diagonals measures 10 yards, find the length of the other diagonal.

Solution :

Given, Area = 125 square yards

Length of one diagonal d= 10 yards

Length of other diagonal d= ?

Area of the rhombus = 1/2 × d1 × d2

125 yd² = 1/2 × 10 yd × d2

125 yd² = 5 yd × d2

(125 yd²) / 5 yd = d2

d2 = 25 yd

So, the length of other diagonal of a rhombus is 25 yd.

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More