In the above figure, ABCD is a rhombus.
Formula for the Area of the Rhombus,
Area = 1/2 × d1 × d2
(Where d1 and d2 are the diagonals of the rhombus)
In figure, AC = d1 and BD = d2
Area = 1/2 × AC × BD
Find the length of the missing diagonal in each rhombus.
Problem 1 :
If WY = 70 yd, find XZ.
Solution :
Given, Area = 1925 yd² and WY = 70 yd
Area of the rhombus = 1/2 × d1 × d2
Here d1 = WY and d2 = XZ
Area = 1/2 × WY × XZ
1925 yd² = 1/2 × 70 yd × d2
1925 yd² = 35 yd × d2
(1925 yd²) / 35 yd = d2
XZ = d2 = 55 yd
Problem 2 :
If FH = 6 ft, find EG.
Solution :
Given, Area = 15 ft² and FH = 6 ft
Area of the rhombus = 1/2 × d1 × d2
Here FH = d1 and EG = d2
Area = 1/2 × FH × EG
15 ft² = 1/2 × 6 ft × d2
15 ft² = 3 ft × d2
(15 ft²) / 3 ft = d2
EG = d2 = 5 ft
Problem 3 :
If KM = 35 in, find LN.
Solution :
Given, Area = 700 in² and KM = 35 in
Area of the rhombus = 1/2 × d1 × d2
Here d1 = KM and d2 = LN
Area = 1/2 × KM × LN
700 in² = 1/2 × 35 in × d2
(700 in² × 2) / 35 in = d2
(1400 in²) / 35 in = d2
LN = d2 = 40 in
Problem 4 :
If VT = 7ft, find SU.
Solution :
Given, Area = 80.5 ft² and VT = 7 ft
Area of the rhombus = 1/2 × d1 × d2
Here d1 = VT and d2 = SU
Area = 1/2 × VT × SU
80.5 ft² = 1/2 × 7 ft × d2
(80. 5 ft² × 2) / 7 ft = d2
d2 = (161 ft²) / 7 ft
SU = d2 = 23 ft
Problem 5 :
If BD = 16 in, find AC.
Solution :
Given, Area = 192 in² and BD = 16 in
Area of the rhombus = 1/2 × d1 × d2
Here d1 = BD and d2 = AC
Area = 1/2 × BD × AC
192 in² = 1/2 × 16 in × d2
192 in² = 8 in × d2
d2 = (192 in²) / 8 in
AC = d2 = 24 in
Problem 6 :
If VX = 49 yd, find UW.
Solution :
Given, Area = 906.5 yd² and VX = 49 yd
Area of the rhombus = 1/2 × d1 × d2
Here d1 = VX and d2 = UW
Area = 1/2 × VX × UW
906.5 yd² = 1/2 × 49 yd × d2
(906.5 yd² × 2) / 49 yd = d2
(1813 yd²) / 49 yd = d2
UW = d2 = 37 yd
Problem 7 :
The length of one of the diagonal of a rhombus is 38 inches. Find the length of the other diagonal, if the area is 646 square inches.
Solution :
Given, Area = 646 square inches
Length of one diagonal d1 = 38 inches
Length of other diagonal d2 = ?
Area of the rhombus = 1/2 × d1 × d2
646 in² = 1/2 × 38 in × d2
646 in² = 19 in × d2
(646 in²) / 19 in = d2
d2 = 34 inches
So, the length of other diagonal of a rhombus is 34 in.
Problem 8 :
The area of a rhombus is 125 square yards. If one of the diagonals measures 10 yards, find the length of the other diagonal.
Solution :
Given, Area = 125 square yards
Length of one diagonal d1 = 10 yards
Length of other diagonal d2 = ?
Area of the rhombus = 1/2 × d1 × d2
125 yd² = 1/2 × 10 yd × d2
125 yd² = 5 yd × d2
(125 yd²) / 5 yd = d2
d2 = 25 yd
So, the length of other diagonal of a rhombus is 25 yd.
May 21, 24 08:51 PM
May 21, 24 08:51 AM
May 20, 24 10:45 PM