FINDING THE DOMAIN OF A RATIONAL FUNCTION WITH SQUARE ROOT

Domain is set of possible inputs.

Case 1 :

When we have square root function at the numerator, the value that we receive after applying possible inputs should never become negative.

Example :

Solution :

Case 2 :

When we have square root function at the denominator, the value that we receive after applying possible inputs should never become negative as well 0.

Example :

Solution :

So, domain is (-∞,-2) and (2, ∞).

Case 3 :

When we have square root function in both numerator and denominator, the value that we receive after applying possible inputs should never become negatives and the denominator should not become 0.

Example :

Solution :

So, domain is [2, ∞).

Find the domain of the functions given below.

Problem 1 :

f(x)=1x+2-3

Solution:

f(x)=1x+2-3

Equating the denominator to 0, we get

√(x + 2) - 3 = 0

√(x + 2) = 3

x + 2 = 32

x + 2 = 9

x = 7

x ≠ 7

x + 2 ≥ 0

x ≥ -2

Domain:

{x| x ∈ R, x ≥ -2, x ≠ 7}

Problem 2 :

f(x)=19-x2

Solution:

f(x)=19-x2

√(9 - x2) = 0

9 - x2 > 0

x2 < 9

x < ± 3

Decomposing into intervals, (-∞, -3)(-3, 3) and (3, ∞).

x = -4 ∈ (-∞, -3)

9 - (-4)2 > 0

False

x = 0 ∈ (-3, 3)

9 - (0)2 > 0

True

x = 4 ∈ (3, )

9 - 42 > 0

False

Domain:

(-3, 3)


Problem 3 :

f(x)=1-xx-5

Solution:

f(x)=1-xx-5

√(1 - x) ≥ 0

1 - x ≥ 0

-x ≥ -1

x ≤ 1

√(x - 5) > 0

x > 5

domain-square-root

Decomposing into intervals, (-∞, 1)(1, 5) and (5, ∞).

x = 0 ∈ (-∞, 1)

√(1 - x) ≥ 0 and √(x - 5) > 0

√(1 - 0) ≥ 0 and √(0 - 5) > 0

False

x = 2 ∈ (1, 5)

√(1 - x) ≥ 0 and √(x - 5) > 0

√(1 - 2) ≥ 0 and √(2 - 5) > 0

False

x = 2 ∈ (5, ∞)

√(1 - x) ≥ 0 and √(x - 5) > 0

√(1 - 2) ≥ 0 and √(2 - 5) > 0

False

Domain:

Ø

Problem 4 :

f(x)=9-x2x

Solution:

f(x)=9-x2x

x ≠ 0

√(9 - x2) ≥ 0

9 - x2 ≥ 0

x2 ≤ 9

x ≤ ± 3

Decomposing into intervals, (-∞, -3)(-3, 0), (0, 3) and (3, ∞).

x = -4 ∈ (-∞, -3)

√(9 - x2) ≥ 0 and x ≠ 0

√(9 - 16) ≥ 0 and x ≠ 0

False

x = -2 ∈ (-3, 0)

√(9 - x2) ≥ 0 and x ≠ 0

√(9 - 4) ≥ 0 and x ≠ 0

True

x = 1 ∈ (0, 3)

√(9 - x2) ≥ 0 and x ≠ 0

√(9 - 1) ≥ 0 and x ≠ 0

True

x = 4 ∈ (3, ∞).

√(9 - x2) ≥ 0 and x ≠ 0

√(9 - 16) ≥ 0 and x ≠ 0

False

Domain:

[-3, 3]

Problem 5 :

t(x)=1x2-4-3

Solution:

t(x)=1x2-4-3

Equating the denominator to 0, we get

√(x2 - 4) - 3 = 0

√(x2 - 4) = 3

x2 - 4 = 9

x2 = 13

x = √13

x ≠ √13

x2 - 4 ≥ 0

x2 ≥ 4

x ≥ ± 2

Domain:

{x| x ∈ R, x ≥ 2 but x ≠ √13}

Problem 6 :

f(x)=x+3x-8

Solution:

f(x)=x+3x-8

√(x - 8) = 0

x - 8 = 0

x = 8

x ≠ 8

x - 8 > 0

x > 8

Domain:

{x| x ∈ R, x > 8 but x ≠ 8}

Problem 7 :

f(x)=xx+3

Solution:

f(x)=xx+3

√(x + 3) > 0

x + 3 > 0

x > -3

Domain:

{x| x ∈ R, x > -3}

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More