Exponential function will be in any of the following forms.
y = bx
(or)
y = abx
(or)
y = abx-h + k
Domain :
Domain of exponential function is all real values. (-∞, ∞).
Range :
(k, ∞) or (-∞, k) can be any one of them, based on exponential growth or decay can be decided.
Exponential growth or decay :
If b > 0 for growth and 0 < b < 1 when it is decay.
Horizontal asymptotes :
The exponential function which is in the form
y = abx-h + k
x = k is the horizontal asymptote.
Find:
1) Domain
2) Range
3) Exponential growth or decay
4) Horizontal asymptote
Problem 1 :
f(x) = 3x
Solution:
Domain:
The domain is all real number.
(-∞, ∞)
Range:
The range is all positive real numbers.
(0, ∞)
Exponential growth or decay:
f(x) = 3x
if x = -3, f(x) = 3-3 = 1/27
if x = -2, f(x) = 3-2 = 1/9
if x = -1, f(x) = 3-1 = 1/3
if x = 0, f(x) = 30 = 1
if x = 1, f(x) = 31 = 3
Since the multiplication factor(b) is 3 > 1, this is an exponential growth function.
Horizontal asymptote:
y = 0
Problem 2 :
f(x) = -(3x)
Solution:
Domain:
The domain is all real number.
(-∞, ∞)
Range:
The range is all negative real numbers.
(-∞, 0)
Exponential growth or decay:
f(x) = -(3x)
a = -1, b = 3 > 3
if x = -3, f(x) = -(3-3) = -1/27
if x = -2, f(x) = -(3-2) = -1/9
if x = -1, f(x) = -(3-1) = -1/3
if x = 0, f(x) = -(30) = -1
if x = 1, f(x) = -(31) = -3
Multiplication factor is 3, but we have negative. Then, it is reflection.
Horizontal asymptote:
y = 0
Problem 3 :
f(x) = 3-x
Solution:
Domain:
The domain is all real number.
(-∞, ∞)
Range:
The range is all positive real numbers.
(0, ∞)
Exponential growth or decay:
f(x) = 3-x
if x = -3, f(x) = 3-(-3) = 27
if x = -2, f(x) = 3-(-2) = 9
if x = -1, f(x) = 3-(-1) = 3
if x = 0, f(x) = 30 = 1
if x = 1, f(x) = 3-(1) = 1/3
This is an exponential decay.
Horizontal asymptote:
y = 0
Problem 4 :
f(x) = (1/3)x
Solution:
Domain:
The domain is all real number.
(-∞, ∞)
Range:
The range is all positive real numbers.
(0, ∞)
Exponential growth or decay:
a = 1, b = 1/3 < 1
f(x) = (1/3)x
if x = -3, f(x) = (1/3)-3 = 27
if x = -2, f(x) = (1/3)-2 = 9
if x = -1, f(x) = (1/3)-1 = 3
if x = 0, f(x) = (1/3)0 = 1
if x = 1, f(x) = (1/3)1 = 1/3
This is an exponential decay function.
Horizontal asymptote:
y = 0
Problem 5 :
f(x) = 2x - 3
Solution:
Domain:
The domain is all real number.
(-∞, ∞)
Range:
(-3, ∞)
Exponential growth or decay:
a = 1, b = 2 > 1
if x = -3, f(x) = 2-3 - 3 = (1/8) - 3 = -2.875
if x = -2, f(x) = 2-2 - 3 = (1/4) - 3 = -2.75
if x = -1, f(x) = 2-1 - 3 = (1/2) - 3 = -2.5
if x = 0, f(x) = 20 - 3 = 1 - 3 = -2
if x = 1, f(x) = 21 - 3 = 2 - 3 = -1
if x = 2, f(x) = 22 - 3 = 4 - 3 = 1
This is exponential growth function.
Horizontal asymptote:
y = -3
Problem 6 :
f(x) = 2x-3
Solution:
Domain:
The domain is all real number.
(-∞, ∞)
Range:
(0, ∞)
Exponential growth or decay:
if x = -2, f(x) = 2-2-3 = 2-5 = 1/32
if x = -1, f(x) = 2-1-3 = 2-4 = 1/16
if x = 1, f(x) = 21-3 = 2-2 = 1/4
if x = 2, f(x) = 22-3 = 2-1 = 1/2
This is an exponential growth function.
Horizontal asymptote:
y = 0
Problem 7 :
f(x) = 2x+5 - 5
Solution:
Domain:
The domain is all real number.
(-∞, ∞)
Range:
(-5, ∞)
Exponential growth or decay:
if x = -2, f(x) = 2-2+5 - 5 = 23 - 5 = 3
if x = -1, f(x) = 2-1+5 - 5 = 24- 5 = 11
if x = 0, f(x) = 20+5 - 5 = 25 - 5 = 27
if x = 1, f(x) = 21+5 - 5 = 26 - 5 = 59
This is an exponential growth function.
Horizontal asymptote:
y = -5
Problem 8 :
f(x) = -2-x
Solution:
Domain:
The domain is all real number.
(-∞, ∞)
Range:
(-∞, 0)
Exponential growth or decay:
if x = -2, f(x) = -2-(-2) = -22 = -4
if x = -1, f(x) = -2-(-1) = -21 = -2
if x = 0, f(x) = -2(0) = -1
if x = 1, f(x) = -2-1 = -1/2
if x = 2, f(x) = -2-2 = -1/4
This is an exponential growth function.
Horizontal asymptote:
y = 0
Problem 9 :
f(x) = -2x+3 + 1
Solution:
Domain:
The domain is all real number.
(-∞, ∞)
Range:
(-∞, 1)
Exponential growth or decay:
if x = -2, f(x) = -2-2+3 + 1 = -2 + 1 = -1
if x = -1, f(x) = -2-1+3 + 1 = -4 + 1 = -3
if x = 0, f(x) = -20+3 + 1 = -8 + 1 = -7
if x = 1, f(x) = -21+3 + 1 = -16 + 1 = -15
if x = 2, f(x) = -22+3 + 1 = -32 + 1 = -31
This is an exponential decay function.
Horizontal asymptote:
y = 1
Problem 10 :
f(x) = (1/2)x-3 - 4
Solution:
Domain:
The domain is all real number.
(-∞, ∞)
Range:
(-4, ∞)
Exponential growth or decay:
if x = -2, f(x) = (1/2)-2-3 - 4 = 32 - 4 = 28
if x = -1, f(x) = (1/2)-1-3 - 4 = 16 - 4 = 12
if x = 0, f(x) = (1/2)0-3 - 4 =8 - 4 = 4
if x = 1, f(x) = (1/2)1-3 - 4 = 4 - 4 = 0
if x = 2, f(x) = (1/2)2-3 - 4 = 2 - 4 = -2
This is an exponential decay function.
Horizontal asymptote:
y = -4
May 21, 24 08:51 PM
May 21, 24 08:51 AM
May 20, 24 10:45 PM