FINDING HORIZONTAL ASYMPTOTES OF EXPONENTIAL FUNCTIONS

Identify the asymptote and transformation from the parent function

f(x) = 4x

i)  identify 3 points

ii) the asymptote

iii)  transformations from the parent function

f(x) = 4x

iv) sketch

Problem 1 :

f(x) = -4x

Solution:

i) Identifying 3 points :

When x = -1

f(x) = -4x

f(-1) = -4-1

= -1/4

When x = 0

f(x) = -4x

f(0) = -40

= -1

When x = 1

f(x) = -4x

f(1) = -41

= -4

Three points are (-1, -1/4) (0, -1) and (1, -4).

ii) Horizontal asymptote:

Considering the function f(x) = a(bx) + c

Horizontal asymptote y = c

So, the horizontal asymptote is at y = 0.

iii) Transformations:

Since y = -y, then it is reflection across x-axis.

iv) Sketching :

finding-axymptote-of-exp-fun-q1

Problem 2 :

f(x) = 4x + 2

Solution:

i) Identifying 3 points :

When x = -1

f(x) = 4x + 2

f(-1) = 4-1 + 2

= 9/4

When x = 0

f(x) = 4x + 2

f(0) = 40 + 2

= 3

When x = 1

f(x) = 4x + 2

f(1) = 41 + 2

= 6

Three points are (-1, 9/4) (0, 3) and (1, 6).

ii) Horizontal asymptote:

Considering the function f(x) = 4x + 2

So, the horizontal asymptote is at y = 2.

iii) Transformations:

Shift 2 units up

iv) Sketching :

finding-axymptote-of-exp-fun-q2.png

Problem 3 :

f(x) = 4x+3

Solution:

i) Finding 3 points :

When x = -1

f(x) = 4x+3

f(-1) = 4-1+3

= 16

When x = 0

f(x) = 4x+3

f(0) = 40+3

= 64

When x = 1

f(x) = 4x+3

f(1) = 41+3

= 256

Three points are (-1, 16) (0, 64) and (1, 256).

ii) Horizontal asymptote:

horizontal asymptote is at y = 0.

iii)  Transformations:

Shift 3 units left

iv) Sketching the graph :

finding-axymptote-of-exp-fun-q3.png

Problem 4 :

f(x) = (1/4)x

Solution:

i) Finding 3 points :

When x = -1

f(x) = (1/4)x

f(-1) = (1/4)-1

= 4

When x = 0

f(x) = (1/4)x

f(0) = (1/4)0

= 1

When x = 1

f(x) = (1/4)x

f(1) = (1/4)1

= 1/4

Three points are (-1, 4) (0, 1) and (1, 1/4).

ii)  Horizontal asymptote:

 f(x) = (1/4)x 

So, the horizontal asymptote is at y = 0.

iii)  Transformations:

There is no transformation.

finding-axymptote-of-exp-fun-q4.png

Problem 5 :

f(x) = 4-x-2

Find the following :

Parent ____

Transformation:

Domain ____

Range ____

Asymptote ____

Solution:

Parent :

f(x) = 4x

Transformation:


Reflection across y-axis and shifting 2 units left

Domain:

All real number

Range:

(0, ∞), {y| y > 0}

Asymptote:

Horizontal asymptote y = 0

problem-5

Problem 6 :

f(x) = (3)(4)x

Solution:

Parent :

f(x) = 4x

Transformation:

Vertical stretch with the factor of 3 units.

Domain:

All real number

Range:

(0, ∞), {y| y > 0}

Asymptote:

Horizontal asymptote y = 0

problem-6.png

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More