Given f(x) = -2x + 1, g(x) = x2, and h(x) = -1/2x + 1/2, evaluate the following:
Problem 1 :
Given f(x) = -2x + 1, find f(-6)
Solution:
f(x) = -2x + 1
f(-6) = -2(-6) + 1
= 12 + 1
f(-6) = 13
Problem 2 :
Given g(x) = x2, find g(-3)
Solution:
g(x) = x2
g(3) = -32
= 9
Problem 3 :
Given h(x) = -1/2x + 1/2, find h(4)
Solution:
Problem 4 :
Given f(x) = -2x + 1, g(x) = x2, find f [g(2)]
Solution:
f [g(x)] = f[x2]
= -2(x2) + 1
f [g(x)] = -2x2 + 1
f [g(2)] = -2(2)2 + 1
= -8 + 1
= -7
Problem 5 :
Given h(x) = -1/2x + 1/2, g(x) = x2, find h [g(8)]
Solution:
h [g(x)] = h[x2]
Problem 6 :
Given f(x) = -2x + 1, g(x) = x2, find (g ∘ f) (5)
Solution:
(g ∘ f) (x) = g [f(x)]
= g[-2x + 1]
g [f(x)] = (-2x + 1)2
g [f(5)] = (-2(5) + 1)2
= (-10 + 1)2
= (-9)2
= 81
Problem 7 :
Given g(x) = x2, and h(x) = -1/2x + 1/2, (g ∘ h) (7)
Solution:
(g ∘ h) (x) = g [h(x)]
Problem 8 :
Given f(x) = -2x + 1, g(x) = x2, and h(x) = -1/2x + 1/2, find f [g(c)]
Solution:
f [g(x)] = f[x2]
= -2(x2) + 1
f [g(x)] = -2x2 + 1
f [g(c)] = -2(c)2 + 1
= -2c2 + 1
Problem 9 :
Given f(x) = -2x + 1, g(x) = x2, and h(x) = -1/2x + 1/2, find f [h(5)]
Solution:
Problem 10 :
Given f(x) = -2x + 1 and h(x) = -1/2x + 1/2, h [f(r)]
Solution:
Problem 11 :
Given f(x) = -2x + 1, g(x) = x2, and h(x) = -1/2x + 1/2, find h[g[f(3)]]
Solution:
g[f(x)] = g[-2x + 1]
= (-2x + 1)2
g[f(3)] = (-2(3) +1)²
= (-6 + 1)2
= -5²
= 25
h[g[f(3)]] = h[25]
Problem 12 :
Given f(x) = -2x + 1, g(x) = x2, and h(x) = -1/2x + 1/2, find (f ∘ g ∘ h)(3)
Solution:
(f ∘ g ∘ h)(x) = f[g[h(x)]]
May 21, 24 08:51 PM
May 21, 24 08:51 AM
May 20, 24 10:45 PM