Let A be an angle in standard position. The reference angle B associated with A is the acute angle formed by the terminal side of A and the x-axis.
Ensure that the given angle is positive and it is between 0° and 360°.
What if the given angle does not meet the criteria above :
Let θ be the angle given.
If θ is positive but greater than 360°, find the positive angle between 0° and 360° that is coterminal with θ°.
To get the coterminal angle, divide θ by 360° and take the remainder.
If θ is negative, add multiples of 360° to θ make the angle as positive such that it is between 0° and 360°.
Once we have the given angle as positive and also it is between 0° and 360°, easily we can find the reference angle as explained below.
Angles in quadrants 1st quadrant 2nd quadrant 3rd quadrant 4th quadrant |
Formula the same 180 - given angle given angle - 180 360 - given angle |
Problem 1 :
325º
Solution :
The given angle 325º is positive and less than 360º.
The angle 325º has its terminal side in quadrant IV.
So, the reference angle is
= 360º - 325º
= 35º
Problem 2 :
-250º
Solution :
The given angle -250º is negative.
Add multiples of 360º to -250º to make the angle as positive such that it is between 0º and 360º.
-250º + 360º = 110º
110º is positive and less than 360º.
The terminal side of the angle 110º is in quadrant II.
So, the reference angle is
= 180º - 110º
= 70º
Problem 3 :
230º
Solution :
The given angle 230º is positive and less than 360º.
The angle 230º has its terminal side in quadrant III.
So, the reference angle is
= 230º - 180º
= 50º
Problem 4 :
335º
Solution :
The given angle 335º is positive and less than 360º.
The angle 335º has its terminal side in quadrant IV.
So, the reference angle is
= 360º - 335º
= 25º
Problem 5 :
-165º
Solution :
The given angle -165º is negative.
Add multiples of 360º to -165º to make the angle as positive such that it is between 0º and 360º.
-165º + 360º = 195º
195º is positive and less than 360º.
The terminal side of the angle 195º is in quadrant III.
So, the reference angle is
= 195º - 180º
= 15º
Problem 6 :
140º
Solution :
The given angle 140º is positive and less than 360º.
The angle 140º has its terminal side in quadrant II.
So, the reference angle is
= 180º - 140º
= 40º
Problem 7 :
280º
Solution :
The given angle 280º is positive and less than 360º.
The angle 280º has its terminal side in quadrant IV.
So, the reference angle is
= 360º - 280º
= 80º
Problem 8 :
340º
Solution :
The given angle 340º is positive and less than 360º.
The angle 340º has its terminal side in quadrant IV.
So, the reference angle is
= 360º - 340º
= 20º
Problem 9 :
-120º
Solution :
The given angle -120º is negative.
Add multiples of 360º to -120º to make the angle as positive such that it is between 0º and 360º.
-120º + 360º = 240º
240º is positive and less than 360º.
The terminal side of the angle 240º is in quadrant III.
So, the reference angle is
= 240º - 180º
= 60º
Problem 10 :
-275º
Solution :
The given angle -275º is negative.
Add multiples of 360º to -275º to make the angle as positive such that it is between 0º and 360º.
-275º + 360º = 85º
85º is positive and less than 360º.
The terminal side of the angle 85º is in quadrant I.
So, the reference angle is
= 85º
May 21, 24 08:51 PM
May 21, 24 08:51 AM
May 20, 24 10:45 PM