FIND THE REFERENCE ANGLE

Let A be an angle in standard position. The reference angle B associated with A is the acute angle formed by the terminal side of A and the x-axis.

referenceangle1

Ensure that the given angle is positive and it is between 0° and 360°.

What if the given angle does not meet the criteria above :

Let θ be the angle given.

Given Angle is Positive

If θ is positive but greater than 360°, find the positive angle between 0° and 360° that is coterminal with θ°.

To get the coterminal angle, divide θ by 360° and take the remainder.

Given Angle is Negative

If θ is negative, add multiples of 360° to θ make the angle as positive such that it is between 0° and 360°.

Once we have the given angle as positive and also it is between 0° and 360°, easily we can find the reference angle as explained below.

Angles in quadrants

1st quadrant

2nd quadrant

3rd quadrant

4th quadrant

Formula

the same

180 - given angle

given angle - 180

360 - given angle

Problem 1 :

325º

Solution :

The given angle 325º is positive and less than 360º.

The angle 325º  has its terminal side in quadrant IV. 

So, the reference angle is

= 360º  - 325º

= 35º

Problem 2 :

-250º

Solution :

The given angle -250º is negative.

Add multiples of 360º to -250º to make the angle as positive such that it is between 0º and 360º.

-250º + 360º = 110º

110º is positive and less than 360º.

The terminal side of the angle 110º is in quadrant II.

So, the reference angle is

= 180º  - 110º

= 70º

Problem 3 :

230º

Solution :

The given angle 230º is positive and less than 360º.

The angle 230º  has its terminal side in quadrant III. 

So, the reference angle is

= 230º  - 180º

= 50º

Problem 4 :

335º

Solution :

The given angle 335º is positive and less than 360º.

The angle 335º  has its terminal side in quadrant IV. 

So, the reference angle is

= 360º  - 335º

= 25º

Problem 5 :

-165º

Solution :

The given angle -165º is negative.

Add multiples of 360º to -165º to make the angle as positive such that it is between 0º and 360º.

-165º + 360º = 195º

195º is positive and less than 360º.

The terminal side of the angle 195º is in quadrant III.

So, the reference angle is

= 195º  - 180º

= 15º

Problem 6 :

140º

Solution :

The given angle 140º is positive and less than 360º.

The angle 140º  has its terminal side in quadrant II. 

So, the reference angle is

= 180º  - 140º

= 40º

Problem 7 :

280º

Solution :

The given angle 280º is positive and less than 360º.

The angle 280º  has its terminal side in quadrant IV. 

So, the reference angle is

= 360º  - 280º

= 80º

Problem 8 :

340º

Solution :

The given angle 340º is positive and less than 360º.

The angle 340º  has its terminal side in quadrant IV. 

So, the reference angle is

= 360º  - 340º

= 20º

Problem 9 :

-120º

Solution :

The given angle -120º is negative.

Add multiples of 360º to -120º to make the angle as positive such that it is between 0º and 360º.

-120º + 360º = 240º

240º is positive and less than 360º.

The terminal side of the angle 240º is in quadrant III.

So, the reference angle is

= 240º  - 180º

= 60º

Problem 10 :

-275º

Solution :

The given angle -275º is negative.

Add multiples of 360º to -275º to make the angle as positive such that it is between 0º and 360º.

-275º + 360º = 85º

85º is positive and less than 360º.

The terminal side of the angle 85º is in quadrant I.

So, the reference angle is

= 85º


Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More