To find distance between two points , we use the formula given below.
Let (x1, y1) and (x2, y2) be two endpoints of the line segment.
Use the given distance d between the two points to find the value of x or y.
Problem 1 :
(0, 3), (x, 5); d = 2√10
Solution :
d = √(x2 - x1)² + (y2 - y1)²
Let x1 = 0, x2 = x, y1 = 3, y2 = 5
Here d = 2√10
2√10 = √(x - 0)² + (5 - 3)²
2√10 = √x² + 2²
2√10 = √x² + 4
Taking squares on both sides,
(2√10)² = (√x² + 4)²
4 × 10 = x² + 4
40 = x² + 4
x² = 40 - 4
x² = 36
x = 6
So, the missing value of x is 6.
Problem 2 :
(-3, -1), (2, y); d = √41
Solution :
d = √(x2 - x1)² + (y2 - y1)²
Let x1 = -3, x2 = 2, y1 = -1, y2 = y
Here d = √41
√41 = √(2 + 3)² + (y + 1)²
√41 = √5² + (y + 1)²
√41 = √(25 + (y + 1)²)
Taking squares on both sides,
(√41)² = (√25 + (y + 1)²)²
41 = 25 + (y + 1)²
41 = 25 + y² + 1 + 2y
y² + 2y + 26 - 41 = 0
y² + 2y - 15 = 0
(y + 5) (y - 3) = 0
y = -5 (or) y = 3
So, the missing value of y is -5 or 3.
Problem 3 :
(x, 7), (-4, 1); d = 6√2
Solution :
d = √(x2 - x1)² + (y2 - y1)²
Let x1 = x, x2 = -4, y1 = 7, y2 = 1
Here d = 6√2
6√2 = √(-4 - x)² + (1 - 7)²
6√2 = √(-4 - x)² + (-6)²
6√2 = √(-4 - x)² + 36
Taking squares on both sides,
(6√2)² = (√(-4 - x)² + 36)²
36 × 2 = (-4 - x)² + 36
72 = x² + 8x + 16 + 36
x² + 8x + 52 - 72 = 0
x² + 8x - 20 = 0
(x - 2) (x + 10) = 0
x = 2 or x = -10
So, the missing value of x is 2 or -10.
Problem 4 :
(1, y), (8, 13); d = √74
Solution :
d = √(x2 - x1)² + (y2 - y1)²
Let x1 = 1, x2 = 8, y1 = y, y2 = 13
Here d = √74
√74 = √(8 - 1)² + (13 - y)²
√74 = √7² + (13 - y)²
√74 = √(49 + (13 - y)²)
Taking squares on both sides,
(√74)² = (√49 + (13 - y)²)²
74 = 49 + (13 - y)²
74 = 49 + 169 + y² - 26y
y² - 26y + 218 - 74 = 0
y² - 26y + 144 = 0
(y - 8) (y - 18) = 0
y = 8 or y = 18
So, the missing value of y is 8 or 18.
May 21, 24 08:51 PM
May 21, 24 08:51 AM
May 20, 24 10:45 PM