FIND THE MISSING SIDE AND ANGLE OF A TRIANGLE USING COSINE RULE

The cosine law can be used which is not a right triangle.

cosine-law

a2 = b2 + c2 - 2bc cos A

b2 = c2 + a2 - 2ac cos B

c2 = a2 + b2 - 2ab cos C

cos A = b2+c2-a22bccos B = a2+c2-b22accos C = a2+b2-c22ab

Problem 1 :

find-missing-side-angle-cos-rule

Solution:

By using cosine rule,

a2 = b2 + c2 - 2bc cos(A)

x2 = 172 + 172 - 2(17)(17) cos(70°)

x2 = 289 + 289 - 578(0.34)

x2 = 381.48

x = √381.48

x = 19.53 cm

Problem 2 :

find-missing-side-angle-cos-rule-q2.png

Solution:

By using cosine rule,

a2 = b2 + c2 - 2bc cos(A)

x2 = (6.1)2 + (5.5)2 - 2(6.1)(5.5) cos(148°)

x2 = 37.21 + 30.25 - 67.1(-0.848)

x2 = 67.46 + 56.9

x2 = 124.36

x = √124.36

x = 11.15 cm

Problem 3 :

find-missing-side-angle-cos-rule-q3.png

Solution:

By using cosine rule,

a2 = b2 + c2 - 2bc cos(A)

x2 = 62 + 72 - 2(6)(7) cos(19°)

x2 = 36 + 49 - 84(0.945)

x2 = 85 - 79.38

x2 = 5.62

x = √5.62

x = 2.37 cm

Problem 4 :

find-missing-side-angle-cos-rule-q4.png

Solution:

By using cosine rule,

Cos A=b2+c2-a22bcCos 𝜃=82+92-1022(8)(9)=64+81-100144=45144Cos 𝜃=0.3125𝜃=Cos-1(0.3125)𝜃=72°

Problem 5 :

find-missing-side-angle-cos-rule-q5.png

Solution:

By using cosine rule,

Cos A=b2+c2-a22bcCos 𝜃=52+82-722(5)(8)=25+64-4980=4080Cos 𝜃=0.5𝜃=Cos-1(0.5)𝜃=60°

Problem 6 :

find-missing-side-angle-cos-rule-q6.png

Solution:

By using cosine rule,

Cos A=b2+c2-a22bcCos 𝜃=222+202-2922(22)(20)=484+400-841880=43880Cos 𝜃=0.048𝜃=Cos-1(0.048)𝜃=87.24°

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More