FIND THE MISSING MEASURES USING COSINE RULE

The cosine law can be used which is not a right triangle.

cosine-law

a2 = b2 + c2 - 2bc cos A

b2 = c2 + a2 - 2ac cos B

c2 = a2 + b2 - 2ab cos C

cos A = b2+c2-a22bccos B = a2+c2-b22accos C = a2+b2-c22ab

Solve for the unknown in each triangle. Round to the nearest hundredth.

Problem 1 :

find-missing-measure-using-cos-rule-q1

Solution:

a2 = b2 + c2 - 2bc cos(A)

x2 = 222 + 172 - 2(12)(17) cos 42°

x2 = 484 + 289 - 748(0.74)

x2 = 219.48

x = √219.48

x = 14.8 m

Problem 2 :

find-missing-measure-using-cos-rule-q2.png

Solution:

Cos 𝜃=b2+c2-a22bcCos 𝜃=392+472-3522(39)(47)=1521+2209-12252(1833)=25053666Cos 𝜃=0.683𝜃=cos-1(0.683) 𝜃=46.92°

Problem 3 :

find-missing-measure-using-cos-rule-q3.png

Solution:

Cos 𝜃=b2+c2-a22bcCos 𝜃=9.42+72-1322(9.4)(7)=88.36+49-169131.6=-31.64131.6Cos 𝜃=-0.24𝜃=cos-1(-0.24) 𝜃=103.9°

Problem 4 :

find-missing-measure-using-cos-rule-q4.png

Solution:

a2 = b2 + c2 - 2bc cos(A)

x2 = 232 + 202 - 2(20)(23) cos 47°

x2 = 529 + 400 - 920(0.68)

x2 = 303.4

x = √303.4

x = 17.4 m

Problem 5 :

find-missing-measure-using-cos-rule-q5.png

Solution:

a2 = b2 + c2 - 2bc cos(A)

x2 = 502 + 552 - 2(50)(55) cos 61°

x2 = 2500 + 3025 - 5500(0.48)

x2 = 2885

x = √2885

x = 53.46 cm

Problem 6 :

find-missing-measure-using-cos-rule-q6.png

Solution:

Cos 𝜃=b2+c2-a22bcCos 𝜃=9.12+8.32-4.922(9.1)(8.3)=82.81+68.89-24.01151.06=127.69151.06Cos 𝜃=0.845𝜃=cos-1(0.845) 𝜃=32.3°

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More