The median(Q2) which divides the data into two equal parts.
Range = Greatest value - smallest value
Interquartile range = Q3 - Q1
Problem 1 :
For each box plot below, find the
(i) median, (ii) Interquartile range, (iii) range
Solution :
(i) Median
Median = 50 score
(ii) Interquartile range
Interquartile range = Q3 - Q1
= 55 - 39
Interquartile range = 16
(iii) Range
Range = Largest value - smallest value
= 68 - 30
Range = 38 score
Problem 2 :
Solution :
(i) Median
Median = 98
(ii) Interquartile range
Interquartile range = Q3 - Q1
= 120 - 90
Interquartile range = 30
(iii) Range
Range = Largest value - smallest value
= 158 - 70
Range = 88 cm
Problem 3 :
Solution :
(i) Median
Median = 1.2
(ii) Interquartile range
Interquartile range = Q3 - Q1
= 1.5 - 1
Interquartile range = 0.5
(iii) Range
Range = Largest value - smallest value
= 3.5 - 0.2
Range = 3.3 km
Problem 4 :
Solution :
(i) Median
Median = 18
(ii) Interquartile range
Interquartile range = Q3 - Q1
= 20 - 16
Interquartile range = 4
(iii) Range
Range = Largest value - smallest value
= 22.5 - 4.5
Range = 18 kg
Solution :
(i) Median
Median = 14
(ii) Interquartile range
Interquartile range = Q3 - Q1
= 17 - 12
Interquartile range = 5
(iii) Range
Range = Largest value - smallest value
= 19 - 10
Range = 9
Problem 6 :
Solution :
(i) Median
Median = 36
(ii) Interquartile range
Interquartile range = Q3 - Q1
= 38 - 32
Interquartile range = 6
(iii) Range
Range = Largest value - smallest value
= 39 - 31
Range = 8
Problem 7 :
Solution :
(i) Median
Median = 25
(ii) Interquartile range
Interquartile range = Q3 - Q1
= 27 - 22.5
Interquartile range = 4.5
(iii) Range
Range = Largest value - smallest value
= 28 - 21
Range = 7
Problem 8 :
Solution :
(i) Median
Median = 55
(ii) Interquartile range
Interquartile range = Q3 - Q1
= 57.5 - 54
Interquartile range = 3.5
(iii) Range
Range = Largest value - smallest value
= 58 - 52
Range = 6
May 21, 24 08:51 PM
May 21, 24 08:51 AM
May 20, 24 10:45 PM