Any one of the Algebraic identities will be useful to find factors of expression.
(a + b)2 = a2 + 2ab + b2
(a - b)2 = a2 - 2ab + b2
a2 - b2 = (a + b)(a - b)
a3 - b3 = (a - b)(a2 + ab + b2)
a3 + b3 = (a + b)(a2 - ab + b2)
Factorize
each polynomial using algebraic identity.
Problem 1 :
49p² - q²
Solution :
49p² - q² = (7p)² - q²
a² - b² = (a + b) (a - b)
(7p)² - q² = (7p + q) (7p - q)
Problem 2 :
64 - d²
Solution :
64 - d² = 8² - d²
a² - b² = (a + b) (a - b)
8² - d² = (8 + d) (8 - d)
Problem 3 :
u² - 16v
Solution :
u² - 16v is not factorable.
Problem 4 :
27u³ + 343v³
Solution :
27u³ + 343v³ = (3u)³ + (7v)³
a³ + b³ = (a + b) (a² - ab + b²)
(3u)³ + (7v)³ = (3u + 7v) [(3u)² - (3u)(7v) + (7v)²]
= (3u + 7v) (9u² - 21uv + 49v²)
Problem 5 :
c³ + 216
Solution :
c³ + 216 = c³ + 6³
a³ + b³ = (a + b) (a² - ab + b²)
c³ + 6³ = (c + 6) [(c²) - (6c) + (6)²]
= (c + 6) (c² - 6c + 36)
Problem 6 :
512z³ - 1
Solution :
512z³ - 1 = (8z)³ - 1³
a³ - b³ = (a - b) (a² + ab + b²)
(8z)³ - 1³ = (8z - 1) [(8z)² + (8z)(1) + 1²]
= (8z - 1) (64z² + 8z + 1)
Problem 7 :
16p² + 56p + 49
Solution :
(a + b)² = a² + 2ab + b²
16p² + 56p + 49 = (4p)² + 2(4p)(7) + 7²
= (4p + 7)²
= (4p + 7) (4p + 7)
Problem 8 :
s² + 16st + 64t²
Solution :
(a + b)² = a² + 2ab + b²
s² + 16st + 64t² = s² + 2(s)(8t) + (8t)²
= (s + 8t)²
= (s + 8t) (s + 8t)
Problem 9 :
k² - 18k + 81
Solution :
(a - b)² = a² - 2ab + b²
k² - 18k + 81 = k² - 2(k)(9) + 9²
= (k - 9)²
= (k - 9) (k - 9)
Problem 10 :
m² - 6mn + 9n²
Solution :
(a - b)² = a² - 2ab + b²
m² - 6mn + 9n² = m² - 2(m)(3n) + (3n)²
= (m - 3n)²
= (m - 3n) (m - 3n)
May 21, 24 08:51 PM
May 21, 24 08:51 AM
May 20, 24 10:45 PM